MATH 11010: Quadratic Equations Section 2.3

- Quadratic Equations: A quadratic equation is an equation of the form

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

where a, b, and c are real numbers.

- Quadratic Functions: A quadratic function f is a function that can be written in the form

$$
f(x)=a x^{2}+b x+c, \quad a \neq 0
$$

where a, b, and c are real numbers.

- Zeros: The zeros of a quadratic function $f(x)=a x^{2}+b x+c$ are the solutions of the corresponding quadratic equation $a x^{2}+b x+c=0$.
- Zero Product Property: If $a b=0$, then $a=0$ or $b=0$.
- Square Root Principle: If $x^{2}=c$, then $x=\sqrt{c}$ and $x=-\sqrt{c}$.

Example 1: Solve the following.
(a) $3(x-4)^{2}-15=0$
(b) $4(x+2)^{2}+24=0$

STEPS FOR COMPLETING THE SQUARE	EXAMPLE: $x^{2}+4 x+2=0$
1) Isolate the constant on one side of the equation.	$x^{2}+4 x=-2$
2) Make sure the coefficient of x^{2} is a positive one.	
If not, divide by this coefficient.	
3) Determine ($\frac{1}{2} \cdot$ coeff of $\left.x\right)^{2}$	$\left(\frac{1}{2} \cdot\right)^{2}=2^{2}=4$
4) Add the result of step (3) to both sides.	$x^{2}+4 x+4=-2+4$
	$(x+2)^{2}=2$
5) Factor as a perfect square and solve by using	$\sqrt{(x+2)^{2}}=\sqrt{2}$
the Square Root Property.	$x+2= \pm \sqrt{2}$
	$x=-2 \pm \sqrt{2}$

Example 2: Solve the following by completing the square.
(a) $x^{2}+6 x-5=0$
(b) $2 x^{2}-16 x+26=0$

Quadratic Formula: The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The quadratic formula is a result of solving $a x^{2}+b x+c=0$ by completing the square.
- The quadratic formula can be used to solve any quadratic equation.
- The expression $b^{2}-4 a c$ is called the discriminant.
- If $b^{2}-4 a c<0$ then there are two different complex number solutions to the quadratic equation.
- If $b^{2}-4 a c=0$, then the quadratic equation has only one real zero.
- If $b^{2}-4 a c>0$, then the quadratic equation has two different real solutions.

Example 3: Solve the following using the quadratic formula.
(a) $3 x^{2}+4=5 x$
(b) $4 x^{2}+4 x-1=0$

Example 4: Solve the following.
(a) $x^{4}-8 x^{2}=9$
(b) $\quad x^{1 / 2}-4 x^{1 / 4}+3=0$
(c) $(3 x+2)^{2}+7(3 x+2)-8=0$

