MATH 11010: Symmetry \& Transformations Section 1.7

Algebraic Tests for Symmetry:

- Symmetric with respect to the x-axis: If replacing y with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the x-axis.
- Symmetric with respect to the y-axis: If replacing x with $-x$ produces an equivalent equation, then the graph is symmetric with respect to the y-axis.
- Symmetric with respect to the origin: If replacing x with $-x$ AND y with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the origin.

Even and Odd Functions:

- Even Function: If the graph of a function f is symmetric with respect to the y-axis, we say that it is an even function. That is, for each x in the domain of $f, f(-x)=f(x)$.
- Odd Function: If the graph of a function f is symmetric with respect to the origin, we say that it is an odd function. That is, for each x in the domain of $f, f(-x)=-f(x)$.

Example 1: Determine if the following functions are even, odd, or neither.
(a) $f(x)=7 x^{3}-5 x$
(b) $g(x)=8 x^{4}-2 x^{2}+5$
(c) $h(x)=9 x^{5}-3 x+1$

Transformations of functions:

- Vertical Shift: Suppose that $c>0$.
- The equation $y=f(x)+c$ shifts the graph of $y=f(x)$ up c units. (Adding a constant on the outside of a functions shifts the graph up.)
- The equation $y=f(x)-c$ shifts the graph of $y=f(x)$ down c units. (Subtracting a constant on the outside of a function shifts the graph down.)
- Horizontal Shift: Suppose that $c>0$.
- The equation $y=f(x+c)$ shifts the graph of $y=f(x)$ to the left c units. (Adding a constant inside the function shifts the graph left.)
- The equation $y=f(x-c)$ shifts the graph of $y=f(x)$ to the right c units. (Subtracting a constant inside the function shifts the graph right.)

- Reflections:

- The equation $y=-f(x)$ reflects the graph of $y=f(x)$ with respect to the x-axis. (Multiplying by a negative on the outside of a function flips the graph with respect to the x-axis.)
- The equation $y=f(-x)$ reflects the graph of $y=f(x)$ with respect to the the y-axis. (Multiplying by a negative inside the function flips the graph with respect to the y-axis.)

- Vertical Stretching and Shrinking:

- When $c>1$, the equation $y=c f(x)$ stretches the graph of $y=f(x)$ vertically by a factor of c. (Multiplying by a number, larger than one, on the outside of a function causes the graph to be stretched or narrowed by a factor of c.)
- When $0<c<1$, the equation $y=c f(x)$ shrinks the graph of $y=f(x)$ vertically by a factor of c. (Multiplying by a number, between zero and one, on the outside of a function causes the graph to shrink or widen by a factor of c.)

- Horizontal Stretching and Shrinking:

- When $c>1$, the equation $y=f(c x)$ shrinks the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{c}$. (Multiplying by a number, larger than one, on the inside of the function causes the graph to shrink horizontally by a factor of $\frac{1}{c}$.)
- When $0<c<1$, the equation $y=f(c x)$ stretches the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{c}$. (Multiplying by a number, between zero and one, on the inside of the function causes the graph to be stretched by a factor of $\frac{1}{c}$.)

Example 2: Determine how the graph of

$$
y=-\frac{9}{2} f(x+2)-9
$$

can be obtained from the graph of f. Be specific.

Example 3: A function f is given, and the indicated transformations are applied to its graph in the given order. Write the equation for the final transformed graph.
(a) $f(x)=\sqrt{x}$; reflected about the y-axis, shrunk horizontally by a factor of $\frac{1}{9}$, vertical shift down 8 units.
(b) $f(x)=x^{2}$; reflected about the x-axis, vertically stretched by a factor of 8 , horizontal shift left 5 units

Example 4: The point $(-12,4)$ is on the graph of $y=f(x)$. Find a point on the graph of $y=g(x)$.
(a) $g(x)=f(x-5)$
(b) $\quad g(x)=f(4 x)$
(c) $\quad g(x)=-2 f(x)$

