1. Consumer demand for the Roland portable hair dryer is given by

$$
D(p)=\frac{1}{5}\left(225-p^{2}\right) \quad(0 \leq p \leq 15)
$$

measured in units of a hundred, where p is the unit price in dollars.
(a) Calculate the elasticity of demand.
(b) If the unit price is lowered slightly from $\$ 10$, will the revenue increase or decrease?
(c) If the unit price is increased slightly from $\$ 8$, will the revenue increase or decrease?
2. Find the derivative of each function. You do not need to simplify.
(a) $\quad f(x)=\log _{2}\left(4-5 x^{3}\right)$
(b) $\quad g(x)=e^{\sqrt{8 x^{2}-4}}$
(c) $\quad h(x)=7^{4 x^{2}-9 x}$
(d) $\quad k(x)=e^{3 x+1}-e^{2 x / 3}$
(e) $\quad f(x)=\ln e^{8-9 x}$
3. Find the derivative of each function. You do not need to simplify.
(a) $\quad f(x)=x^{2} e^{x}-2 \ln x+\left(x^{2}+1\right)^{3}$
(b) $\quad g(x)=\ln \left(5 x^{3}-7 x^{2}+6\right)^{4}$
(c) $\quad h(x)=\frac{\ln \sqrt{5 x+3}}{x^{4}}$
(d) $\quad k(x)=x^{3} \ln \left(4 e^{-x}-2 e^{2 x}\right)$
(e) $\quad f(x)=(\ln 5 x)^{3}+3 x^{2} e^{-7 x}$
4. How long will it take $\$ 10,000$ to grow to $\$ 15,000$ if the investment earns an interest rate of 12% per year compounded quarterly?
5. Let $f(t)=350 \sqrt[3]{2 t+5}$.
(a) Find the relative rate of change.
(b) Evaluate the relative rate of change at $t=2$.
6. A Middle Eastern oil producing country estimates that the demand for oil (in millions of barrels) is $D(p)=28 e^{-0.04 p}$, where p is the price of a barrel of oil. To raise its revenues, should it raise or lower its price from its current level of $\$ 30$ per barrel?
7. If a college education costs $\$ 75,000$, low large a trust fund, paying 5% compounded continuously, must be established at a child's birth to ensure sufficient funds at age 18 ?
8. A $\$ 25,000$ automobile depreciates by 32% per year. Find its value after 5 years.
9. True or False.
(a) $\ln x=\frac{1}{x}$
(b) $\ln e=0$

ANSWERS

1. (a) $\frac{2 p^{2}}{225-p^{2}}$
(b) revenue increases
(c) revenue decreases
2. (a) $f^{\prime}(x)=\frac{-15 x^{2}}{(\ln 2)\left(4-5 x^{3}\right)}$
(b) $g^{\prime}(x)=e^{\left(8 x^{2}-4\right)^{1 / 2}} \cdot \frac{1}{2}\left(8 x^{2}-4\right)^{-1 / 2}(16 x)$
(c) $h^{\prime}(x)=(\ln 7) \cdot 7^{4 x^{2}-9 x}(8 x-9)$
(d) $k^{\prime}(x)=3 e^{3 x+1}-\frac{2}{3} e^{2 x / 3}$
(e) $f^{\prime}(x)=\frac{-9 e^{8-9 x}}{e^{8-9 x}}=-9$
3. (a) $f^{\prime}(x)=x^{2} e^{x}+2 x e^{x}-\frac{2}{x}+3\left(x^{2}+1\right)^{2}(2 x)$
(b) $g^{\prime}(x)=\frac{4\left(15 x^{2}-14 x\right)}{5 x^{3}-7 x^{2}+6}$
(c) $h^{\prime}(x)=\frac{x^{4} \cdot \frac{5}{2(5 x+3)}-\left(\ln (5 x+3)^{1 / 2}\right)\left(4 x^{3}\right)}{x^{8}}$
(d) $k^{\prime}(x)=x^{3}\left(\frac{-4 e^{-x}-4 e^{2 x}}{4 e^{-x}-2 e^{2 x}}\right)+3 x^{2} \ln \left(4 e^{-x}-2 e^{2 x}\right)$
(e) $f^{\prime}(x)=3(\ln 5 x)^{2} \cdot \frac{1}{x}-21 x^{2} e^{-7 x}+6 x e^{-7 x}$
4. time is approximately 3.43 years
5. (a) relative rate $=\frac{2}{3(2 t+5)}$
(b) $\frac{2}{27}$
6. $E(20)=1.2>1$; elastic, hence lower prices
7. $P=\$ 30,492.72$
8. $V=\$ 3,634.83$
9. (a) False; $\frac{d}{d x} \ln x=\frac{1}{x}$; but $\ln x \neq \frac{1}{x}$
(b) False; $\ln e=1$
