1. A young couple are saving to pay for their wedding in 4 years. If their wedding will cost $25,000, how much should they deposit into an account paying 7.65%, compounded continuously, in order to pay for their wedding.

2. Find the value of $23,200 deposited into an account paying 4.3% compounded daily for 7 years.

3. A $5,500 computer depreciates by 17% per year. Find its value after
 (a) 2 years
 (b) 6 months

4. A computer software store determines the demand function for a new videogame is given by
 \[D(p) = \sqrt{200 - p^3}, \]
 where \(D(p) \) represents the number of videogames sold per day when the price is \(p \) dollars per game.
 (a) Calculate the elasticity of demand.
 (b) If the unit price is lowered slightly from $3, will the revenue increase or decrease?
 (c) If the unit price is increased slightly from $5, will the revenue increase or decrease?

5. How long will it take an investment to increase by 75% if it is deposited into an account paying 5.36%, compounded weekly?

6. Let \(f(t) = 3t^2 - 5t \).
 (a) Find the relative rate of change.
 (b) Evaluate the relative rate of change at \(t = 2 \).

7. An automobile dealer is selling cars at a price of $12,000. The demand function is given by \(D(p) = 3(30 - 0.002p)^2 \), where \(p \) is the price of a car. Should the dealer raise or lower the price to increase revenue?

8. Find the derivative of each function. You do not need to simplify.
 (a) \(f(x) = 5e^{4x^3} - \ln (3x + 2)^2 \)
 (b) \(g(x) = 8^{3x-7x^2} \)
 (c) \(h(x) = \log_7 (2e^{-x} - 5x) \)
 (d) \(k(x) = 4e^{\frac{3}{9x^2+1}} \)

9. Find the derivative of each function. You do not need to simplify.
 (a) \(g(x) = (5e^{2x^3} - \ln 6x)^7 \)
 (b) \(h(x) = \frac{\ln \sqrt{7x - 4}}{3x^5} \)
 (c) \(f(x) = 3e^{5x} \ln (5x^2 - 7x + 2) \)
 (d) \(k(x) = x^4 e^{7x} - \ln (4x + 2)^2 + \frac{4}{3x} \)
 (e) \(f(x) = | \ln(9x + 2) |^4 + 2xe^{7x/3} \)
ANSWERS

1. $P = $18, 409.67

2. $A = $31, 347.50

3. (a) $3, 788.95
 (b) $5, 010.74

4. (a) $\frac{3p^3}{2(200 - p^3)}$
 (b) revenue decreases
 (c) revenue decreases

5. $t = 10.45$ years

6. (a) $\frac{6t - 5}{3t^2 - 5t}$
 (b) $\frac{7}{2}$

7. lower prices to raise revenue

8. (a) $f'(x) = 20e^{4x-3} - \frac{2(3x + 2)(3)}{3x + 2)^2}$
 (b) $g'(x) = (\ln 8) \left(8^{3x-7x^2}\right)(3 - 14x)$
 (c) $h'(x) = \frac{-2e^{-x} - 5}{(\ln 7)(2e^{-x} - 5x)}$
 (d) $k'(x) = 4\left(\frac{1}{3}\right)(9x^2 + 1)^{-2/3}(18xe^{(9x^2+1)^{1/3}}$

9. (a) $g'(x) = 7 \left(5e^{2x^3} - \ln 6x\right)^6 \left[5(6x^2)e^{2x^3} - \frac{1}{x}\right]$
 (b) $h'(x) = \frac{3x^5\left(\frac{1}{2}\right)7^{3x-1} - \left(\frac{1}{2} \ln(7x - 4)\right)(15x^4)}{9x^{10}}$
 (c) $f'(x) = 3e^{5x} \left(\frac{10x - 7}{5x^2 - 7x + 2}\right) + 15e^{5x} \cdot \ln(5x^2 - 7x + 2)$
 (d) $k'(x) = 7x^4e^{7x} + 4x^3e^{7x} - \frac{8}{4x+2} - \frac{4}{3x^2}$
 (e) $f'(x) = 4\left[\ln(9x + 2)\right]^3 \left(\frac{9}{9x+2}\right) + 2x \left(\frac{2}{3}\right)e^{7x/3} + 2e^{7x/3}$