Section 5.3: Definite Integrals and Areas

Definition. If F is an antiderivative of f, then the **definite integral** of f from a to b is defined as

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{x=a}^{x=b} = F(b) - F(a)$$

Here, a is called the **lower limit of integration** and b is called the **upper limit of inte**gration.

Note. The *indefinite integral* $\int f(x) dx$ is the antiderivative plus a constant. That is,

$$\int f(x) \, dx = F(x) + C$$

The definite integral $\int_a^b f(x) dx$ is the antiderivative evaluated at x = b minus the antiderivative evaluated at x = a. That is,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

Hence, when finding a definite integral, your answer will always be a number (positive, negative, or zero). The meaning of this number will be explored in the next Topic.

Example 1. Find $\int_{1}^{3} (2x-1) \, dx.$

SOLUTION.

$$\int_{1}^{3} (2x - 1) dx = (x^{2} - x) \Big|_{x=1}^{x=3}$$
$$= [(3)^{2} - (3)] - [(1)^{2} - (1)]$$
$$= [9 - 3] - [1 - 1]$$
$$= [6] - [0]$$
$$= \boxed{6}$$

Example 2. Find $\int_{1}^{4} (x^2 - 4x + 3) dx.$

Example 3. Find $\int_0^4 (\sqrt{x} - 2x - 3) dx.$

Results:

• If the graph of y = f(x) is above the x-axis for $a \le x \le b$, then

• If the graph of y = f(x) is below the x-axis for $a \le x \le b$, then $\int_a^b f(x) dx$ will be a negative number and

• If the graph of y = f(x) is above and below the x-axis for $a \le x \le b$, then

Example 4. Find the area under $f(x) = 9 - 3\sqrt{x}$ from x = 0 to x = 9.

Example 5. For the function f graphed below, find the following using basic area formulas from geometry:

(a)
$$\int_{-3}^{-1} f(x) \, dx =$$

(b)
$$\int_{1}^{3} f(x) dx =$$

(c)
$$\int_{-1}^{2} f(x) \, dx =$$

(d)
$$\int_{-1}^{3} f(x) \, dx =$$

EXERCISES

Find the following definite integrals.

1.
$$\int_{1}^{2} (3x^2 + 4x - 1) \, dx =$$
 6. $\int_{-3}^{1} (2x^2 + 4x + 5) \, dx =$

2.
$$\int_{-1}^{1} (6x^2 - 8x + 2) \, dx =$$
 7. $\int_{0}^{1} (4x^3 + x^2 - 5x + 2) \, dx =$

3.
$$\int_{-4}^{-1} (-6x^2 + 2x + 1) dx =$$
 8. $\int_{-1}^{0} (x^4 + x^2 + 1) dx =$

4.
$$\int_{-2}^{0} (-3x^2 - 4x - 2) \, dx =$$
 9. $\int_{-2}^{1} (-x^2 + x - 5) \, dx =$

5.
$$\int_{-2}^{2} (x^2 + 3x + 1) dx =$$
 10. $\int_{0}^{4} (2\sqrt{x} + x + 1) dx =$

11.
$$\int_{1}^{9} (\sqrt{x} + 3x - 2) \, dx =$$
 14. $\int_{-3}^{-1} \frac{4}{x} \, dx =$

12.
$$\int_0^1 (\sqrt{x} - x^3) \, dx =$$
 15. $\int_0^2 e^{2x} \, dx =$

13.
$$\int_{1}^{e} \frac{2}{x} dx =$$
 16. $\int_{0}^{1} e^{-x} dx =$

ANSWERS

1.	12	7.	5/6	13.	2
2.	8	8.	23/15	14.	$-4\ln 3$
3.	-138	9.	-39/2	15.	$\frac{1}{2}e^4 - \frac{1}{2}$
4.	-4	10.	68/3	16.	$-e^{-1}+1$
5.	28/3	11.	364/3		
6.	68/3	12.	5/12		