Section 5.4: Average Value and Area Between Curves

Definition. The average value of a continuous function on an interval $[a, b]$ is given by:

$$
\text { average value on }[a, b]=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example 1. Find the average value of $f(x)=16-3 x^{2}$ on $[-2,3]$.

Area Between Curves Result. The area of the region bounded by the curves $y=f(x)$, $y=g(x)$, and the lines $x=a, x=b$, where f and g are continuous and $f(x) \geq g(x)$ for $a \leq x \leq b$ is

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b}[\text { Top function }- \text { Bottom function }] d x
$$

Example 2. Find the area of the region bounded by the graphs of $y=-x+4, y=x$, and $x=0$.

Solution. We must first graph this region:

Then

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}[\text { Top function }- \text { Bottom function }] d x=\int_{0}^{2}[(-x+4)-(x)] d x \\
& \qquad \begin{aligned}
\text { Area } & =\int_{0}^{2}[(-x+4)-(x)] d x \\
& =\int_{0}^{2}[-2 x+4] d x \\
& =-x^{2}+\left.4 x\right|_{x=0} ^{x=2} \\
& =\left[-(2)^{2}+4(2)\right]-\left[-(0)^{2}+4(0)\right] \\
& =[-(4)+8]-[-0+0] \\
& =4
\end{aligned}
\end{aligned}
$$

Important Note. The problems in this section require you to find the area of a region. Since a region can never have negative area, your final answer must be a positive number. (Note that a definite integral can be negative-valued, or equal to zero, but the area of a region must always be positive-valued.) Therefore, if your final answer happens to be negative, then you made an error somewhere in your solution.

Example 3. Find the area of the region bounded by the graphs of $y=x^{2}, \quad x=2$, and the x-axis. Be sure to first accurately graph this region on the axes below.

Answer: 8/3

Example 4. Find the area of the region bounded by the graphs of $y=\sqrt{x}, \quad x=1, \quad x=4$, and the x-axis. Be sure to first accurately graph this region on the axes below.

Answer: 14/3

Example 5. Find the area of the region bounded by the graphs of $y=\sqrt{x}+2, \quad y=x$, and $x=0$. Be sure to first accurately graph this region on the axes below.

Answer: 16/3

Example 6. Find the area of the region bounded by the graphs of $y=x^{2}$ and $y=\sqrt{x}$. Be sure to first accurately graph this region on the axes below.

Answer: 1/3

Example 7. Find the area of the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{1}{2} x$.
Be sure to first accurately graph this region on the axes below.
Answer: 4/3

Example 8. Find the area of the region bounded by the graphs of $y=x^{2}-2$ and $y=x$. Be sure to first accurately graph this region on the axes below.

Answer: 9/2

Example 9. Find the area of the region bounded by the graphs of $y=-x^{2}+3$ and $y=-x+1$. Be sure to first accurately graph this region on the axes below.

Answer: 9/2

Example 10. Find the area of the region bounded by the graphs of $y=x^{2}, \quad y=4$, and $x \geq 0$. Be sure to first accurately graph this region on the axes below.

Answer: 16/3

Example 11. Find the area of the region bounded by the graphs of $y=\sqrt{x}, \quad y=2$, and $x=0$. Be sure to first accurately graph this region on the axes below.

Example 12. Find the area of the region bounded by the graphs of $y=x^{3}$ and $y=x$. Be sure to first accurately graph this region on the axes below.

Answer: 1/2

EXERCISES

1. Find the area of the region bounded by the graphs of $y=x^{3}+3, \quad y=-2 x$, and $x=1$. Be sure to first accurately graph this region on the axes below.

2. Find the area of the region bounded by the graphs of $y=-\sqrt{x}+3, \quad y=1, \quad$ and $x=0$. Be sure to first accurately graph this region on the axes below.

Answer: 8/3

3. Find the area of the region bounded by the graphs of $y=\frac{1}{4} x+1, \quad y=-\frac{1}{2} x+4$, and $x=0$. Be sure to first accurately graph this region on the axes below.

Answer: 6

4. Find the area of the region bounded by the graphs of $y=x^{3}+2, \quad y=-\sqrt{x}+2$, and $\quad x=1$. Be sure to first accurately graph this region on the axes below.

Answer: 11/12

