Section 3.2: Curve Sketching Polynomials

1. INTERCEPTS:

- x-intercepts: let $y=0$, and solve for x
- y-intercepts: let $x=0$, and solve for y

2. INCREASING/DECREASING:

- Increasing when $f^{\prime}(x)>0$.
- Decreasing when $f^{\prime}(x)<0$.

3. RELATIVE MAX/MIN:

- Relative Max: $f(c)$ is a relative max if $f^{\prime}(x)$ changes from + to - at $x=c$.
- Relative Min: $f(c)$ is a relative max if $f^{\prime}(x)$ changes from - to + at $x=c$.

4. CONCAVITY:

- Concave up when $f^{\prime \prime}(x)>0$
- Concave down when $f^{\prime \prime}(x)<0$

5. POINTS OF INFLECTION: P is a point of inflection if the concavity of f changes at P. (NOTE: To be a point of inflection P must be in the domain of f.)
6. SKETCH GRAPH

Example 1. Give a complete graph of

$$
f(x)=x^{3}-9 x^{2}+15 x-2 .
$$

Be sure to show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

Example 2. Give a complete graph of

$$
f(x)=x^{4}+8 x^{3}+18 x^{2}+8
$$

Be sure to show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

Example 3. Give a complete graph of

$$
f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1 .
$$

Be sure to show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

