Section 3.2: Curve Sketching Rational Functions

1. DOMAIN: Find all values of x for which $f(x)$ is defined.
2. INTERCEPTS:

- x-intercepts: let $y=0$, and solve for x
- y-intercepts: let $x=0$, and solve for y

3. ASYMPTOTES:

- Vertical asymptotes: Find the values of a for which

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \text { or } \quad \lim _{x \rightarrow a} f(x)=-\infty
$$

(NOTE: for a rational function, find where the denominator is equal to zero.)

- Horizontal asymptotes: If $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ then $y=L$ is a horizontal asymptote.

4. INCREASING/DECREASING:

- Increasing when $f^{\prime}(x)>0$.
- Decreasing when $f^{\prime}(x)<0$.

5. RELATIVE MAX/MIN:

- Relative Max: $f(c)$ is a relative max if $f^{\prime}(x)$ changes from + to - at $x=c$.
- Relative Min: $f(c)$ is a relative max if $f^{\prime}(x)$ changes from - to + at $x=c$.

6. CONCAVITY:

- Concave up when $f^{\prime \prime}(x)>0$
- Concave down when $f^{\prime \prime}(x)<0$

7. POINTS OF INFLECTION: P is a point of inflection if the concavity of f changes at P. (NOTE: To be a point of inflection P must be in the domain of f.)
8. SKETCH GRAPH

Example 1. Give a complete graph of

$$
f(x)=\frac{x-4}{x-2} .
$$

Be sure to find any horizontal and vertical asymptotes, show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

Example 2. Give a complete graph of

$$
f(x)=\frac{8}{x^{2}-4}
$$

Be sure to find any horizontal and vertical asymptotes, show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

EXERCISES

Give a complete graph of the following functions. Be sure to find any horizontal and vertical asymptotes, show on a sign chart where the function is increasing/decreasing, concave up/concave down, and identifying (as ordered pairs) all relative extrema and inflection points. Also, identify the y-intercept.

1. $f(x)=\frac{2 x+9}{x+3}$
2. $f(x)=\frac{-2}{x+1}$

ANSWERS

1. Vertical asymptote at $x=-3$; horizontal asymptote at $y=2$; no relative extrema or inflection points; y-intercept at $(0,3)$.

$$
f^{\prime}(x)=\frac{-3}{(x+3)^{2}}
$$

$$
f^{\prime \prime}(x)=\frac{6}{(x+3)^{3}}
$$

2. Vertical asymptote at $x=-1$; horizontal asymptote at $y=0$ (i.e., the x-axis); no relative extrema or inflection points; y-intercept at $(0,-2)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{(x+1)^{2}} \\
f^{\prime \prime}(x) & =\frac{-4}{(x+1)^{3}}
\end{aligned}
$$

