Section 2.7: Derivative Graphs

Recall. The derivative evaluated at x = a is the slope of the tangent line to the graph of y = f(x) at the point (a, f(a)). Hence, to find f'(a) from a graph, you must sketch the tangent line at the point (a, f(a)) and then find the slope of that tangent line.

Result. If the graph of y = f(x) has a sharp point at x = a, or if the function is not continuous at x = a (i.e., the graph has a hole or jump at x = a), then the function will not have a derivative at x = a. In this case, we would say "f is **not differentiable** at x = a" and write "f'(a) = Does not exist."

Note. The graph of a function can have a vertical tangent at (a, f(a)). In this case, since the slope of a vertical line is undefined, the derivative at x = a will also be undefined.

For example, the graph of $f(x) = \sqrt[3]{x-1}$ has a vertical tangent at x = 1. (See graph below.) Hence, f'(1) = Undefined.

Example 1. For the function f graphed below, find the following:

1. f'(-7) =

2.
$$f'(-4) =$$

3.
$$f'(0) =$$

4.
$$f'(5) =$$

5. List the value(s) of x at which f is not differentiable.

Supplemental Exercises

For the function f graphed below, find the following:

For the functions graphed below, find the following:

- (a) the value(s) of x for which the graph has a horizontal tangent.
- (b) the intervals where the derivative is positive.
- (c) the intervals where the derivative is negative.

ANSWERS

1. 3	111	21. 1
2. 3	121	22. 1
3. 3	13. 2	
4. 3	14. 2	23. Does not exist
5. 1	15. 2	24. 0
63	16. 2	25. Does not exist
7. Does not exist	17. 2	261
8. 1	18. Does not exist	
91	191	27. $x = -2$
101	20. Does not exist	28. $x = -4, -2, 3, 5$

- 29. (a) x = 2(b) $(-\infty, 2)$ (c) $(2, \infty)$
- 30. (a) x = -1, 3(b) $(-\infty, -1) \cup (3, \infty)$ (c) (-1, 3)
- 31. (a) x = -3, -1, 1(b) $(-\infty, -3) \cup (-1, 1)$ (c) $(-3, -1) \cup (1, \infty)$