Section 2.7: Derivative Graphs

Recall. The derivative evaluated at $x=a$ is the slope of the tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$. Hence, to find $f^{\prime}(a)$ from a graph, you must sketch the tangent line at the point $(a, f(a))$ and then find the slope of that tangent line.

Result. If the graph of $y=f(x)$ has a sharp point at $x=a$, or if the function is not continuous at $x=a$ (i.e., the graph has a hole or jump at $x=a$), then the function will not have a derivative at $x=a$. In this case, we would say " f is not differentiable at $x=a$ " and write " $f^{\prime}(a)=$ Does not exist."

Note. The graph of a function can have a vertical tangent at $(a, f(a))$. In this case, since the slope of a vertical line is undefined, the derivative at $x=a$ will also be undefined.

For example, the graph of $f(x)=\sqrt[3]{x-1}$ has a vertical tangent at $x=1$. (See graph below.) Hence, $f^{\prime}(1)=$ Undefined.

Example 1. For the function f graphed below, find the following:

1. $f^{\prime}(-7)=$
2. $f^{\prime}(-4)=$
3. $f^{\prime}(0)=$
4. $f^{\prime}(5)=$
5. List the value(s) of x at which f is not differentiable.

Supplemental Exercises

For the function f graphed below, find the following:

1. $\lim _{x \rightarrow-4^{-}} f(x)=$
2. $\lim _{x \rightarrow-4^{+}} f(x)=$
3. $\lim _{x \rightarrow-4} f(x)=$
4. $f(-4)=$
5. $\lim _{x \rightarrow-2^{-}} f(x)=$
6. $\lim _{x \rightarrow-2^{+}} f(x)=$
7. $\lim _{x \rightarrow-2} f(x)=$
8. $f(-2)=$
9. $\lim _{x \rightarrow 0^{-}} f(x)=$
10. $\lim _{x \rightarrow 0^{+}} f(x)=$
11. $\lim _{x \rightarrow 0} f(x)=$
12. $f(0)=$
13. $\lim _{x \rightarrow 3^{-}} f(x)=$
14. $\lim _{x \rightarrow 3^{+}} f(x)=$
15. $\lim _{x \rightarrow 3} f(x)=$
16. $f(3)=$
17. $f^{\prime}(-6)=$
18. $f^{\prime}(-4)=$
19. $f^{\prime}(-3)=$
20. $\quad f^{\prime}(-2)=$
21. $f^{\prime}(0)=$
22. $f^{\prime}(2)=$
23. $f^{\prime}(3)=$
24. $f^{\prime}(4)=$
25. $f^{\prime}(5)=$
26. $f^{\prime}(6)=$
27. List the value(s) of x at which f is discontinuous.
28. List the value(s) of x at which f is not differentiable.

For the functions graphed below, find the following:
(a) the value(s) of x for which the graph has a horizontal tangent.
(b) the intervals where the derivative is positive.
(c) the intervals where the derivative is negative.
29.

30.

31.

ANSWERS

1. 3
2. -1
3. 1
4. 3
5. -1
6. 1
7. 3
8. 2
9. 3
10. 2
11. 1
12. 2
13. 0
14. -3
15. 2
16. Does not exist
17. Does not exist
18. 2
19. -1
20. 1
21. Does not exist
22. -1
23. -1
24. -1
25. Does not exist
26. $x=-4,-2,3,5$
27. (a) $x=2$
(b) $(-\infty, 2)$
(c) $(2, \infty)$
28. (a) $x=-1,3$
(b) $(-\infty,-1) \cup(3, \infty)$
(c) $(-1,3)$
29. (a) $x=-3,-1,1$
(b) $(-\infty,-3) \cup(-1,1)$
(c) $(-3,-1) \cup(1, \infty)$
