Section 2.2: Derivatives

Definition. For a function f, its **derivative** f' is another function defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided this limit exists. If the derivative exists at x = a, we say f is differentiable at a.

THE BIG RESULT

Graphically, f'(a) is the slope of the tangent line to the graph of y = f(x) at the point (a, f(a)). That is,

 $m_{\text{tan at } x = a} = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$

Since the derivative is a slope, we have the following immediate results (see page ??):

- If f'(a) is positive, then the slope of the tangent line is positive and hence the graph of the function is *increasing* (\nearrow) at x = a.
- If f'(a) is negative, then the slope of the tangent line is negative and hence the graph of the function is *decreasing* (\searrow) at x = a.
- If f'(a) = 0, then the slope of the tangent line is zero and hence the graph has a horizontal tangent (→) at x = a.
- If f'(a) is a large positive number, then the slope of the tangent line is a large positive number and hence the tangent line is near vertical. In this case, we say the function is rapidly increasing at x = a.
- If f'(a) is a small positive number, then the slope of the tangent line is a small positive number and hence the tangent line is near horizontal. In this case, we say the function is *slowly increasing* at x = a.

Notation. Let y = f(x).

• The derivative may be denoted in the following ways:

$$f'(x)$$
 OR $\frac{d}{dx}f(x)$ OR y' OR $\frac{dy}{dx}$.

• The derivative evaluated at a value of x, say for example x = 5, may be denoted in the following ways:

$$f'(5)$$
 OR $\frac{d}{dx}f(x)\Big|_{x=5}$ OR $y'\Big|_{x=5}$ OR $\frac{dy}{dx}\Big|_{x=5}$.

Example 1. If $f(x) = x^2 - 4x + 1$, find f' using the definition. Solution.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{\left[(x+h)^2 - 4(x+h) + 1 \right] - \left[x^2 - 4x + 1 \right]}{h}$$

=
$$\lim_{h \to 0} \frac{\cancel{x^2} + 2xh + h^2 - \cancel{4x} - 4h + \cancel{1} - \cancel{x^2} + \cancel{4x} - \cancel{1}}{h}$$

=
$$\lim_{h \to 0} \frac{\cancel{2xh} + h^2 - 4h}{h}$$

=
$$\lim_{h \to 0} \frac{\cancel{x(2x+h-4)}}{\cancel{1}}$$

=
$$\lim_{h \to 0} 2x + h - 4$$

=
$$\boxed{2x - 4}$$

Example 2. Using the result in Example 1,

- (a) find the slope of the tangent line to the graph of $f(x) = x^2 4x + 1$ at the point (3, -2).
- (b) find the slope of the tangent line to the graph of $f(x) = x^2 4x + 1$ at the point (2, -3).

SOLUTION.

(a) The slope of the tangent line is given by the derivative. Hence, we need to evaluate the derivative at x = 3, the x-coordinate of the point (3, -2). (Note that the derivative is f'(x) = 2x - 4, as calculated in Example 1 above.)

$$m_{\text{tan at } x=3} = f'(3) = 2(3) - 4 = 6 - 4 = |2|.$$

Since the derivative is positive, the slope of the tangent line is positive, and therefore the graph of the function is *increasing* (\nearrow) at x = 3.

(b) The solution is identical to part (a), except we now evaluate the derivative at x = 2, the x-coordinate of the point (2, -3).

$$m_{\text{tan at } x=2} = f'(2) = 2(2) - 4 = 4 - 4 = 0$$

Since the derivative is zero, the slope of the tangent line is zero, and therefore the graph of the function has a *horizontal tangent* (\rightarrow) at x = 2.

Here are the results of Example 2 illustrated on the graph of $f(x) = x^2 - 4x + 1$:

Example 3. Let $f(x) = x^3 - 3x$.

(a) Find f'(x) using the definition.

(b) Find the slope of the tangent line to the graph of y = f(x) at the point (2, 2).

(c) Find the equation of the tangent line to the graph of y = f(x) at the point (2, 2).

(d) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.

Example 4. Find the equation of the tangent line to $f(x) = 5 + 3x - 4x^2$ at x = 1.

Supplemental Exercises

Find the derivative of the following functions using the definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

- 1. $f(x) = x^2 + 5x 1$ 3. $f(x) = x^3 + 5$
- 2. $f(x) = 2x^2 + 3x + 1$ 4. $f(x) = \frac{1}{x}$
- 5. If $f(x) = x^2 4x + 2$, then it will soon be shown that its derivative is

$$f'(x) = 2x - 4.$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (1, -1).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (1, -1).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.
- (d) Find the value(s) of x at which the graph of y = f(x) has a tangent line having slope 4.
- 6. If $f(x) = \frac{4}{3}x^3 x 26$, then it will soon be shown that its derivative is

$$f'(x) = 4x^2 - 1.$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (3,7).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (3,7).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.
- (d) Find the value(s) of x at which the graph of y = f(x) has a tangent line having slope 3.
- (e) Find the value(s) of x at which the graph of y = f(x) has a tangent line having slope 7.

7. If $f(x) = x^3 + x^2 - x - 2$, then it will soon be shown that its derivative is

$$f'(x) = 3x^2 + 2x - 1$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (1, -1).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (1, -1).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.
- (d) Find the value(s) of x at which the graph of y = f(x) has a tangent line having slope 1.

8. If $f(x) = \frac{x}{x^2 + 1}$, then it will soon be shown that its derivative is

$$f'(x) = \frac{1 - x^2}{(x^2 + 1)^2}.$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (2, 2/5).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (2, 2/5).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.

9. If $f(x) = \frac{2}{3}(x+2)^{3/2}$, then it will soon be shown that its derivative is

$$f'(x) = \sqrt{x+2}.$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (7, 18).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (7,18).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.
- (d) Find the value(s) of x at which the graph of y = f(x) has a tangent line having slope 4.

10. If $f(x) = 3xe^x$, then it will soon be shown that its derivative is

$$f'(x) = 3e^x + 3xe^x$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (0,0).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (0, 0).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.

11. If $f(x) = \frac{\ln x}{2x}$, then it will soon be shown that its derivative is

$$f'(x) = \frac{1 - \ln x}{2x^2}.$$

- (a) Find the slope of the tangent line to the graph of y = f(x) at the point (1, 0).
- (b) Find the equation of the tangent line to the graph of y = f(x) at the point (1,0).
- (c) Find the value(s) of x at which the graph of y = f(x) has a horizontal tangent.

ANSWERS

1.	f'(x) = 2x + 5	(c)	$x = \pm 1/2$	9.	(a)	3
2.	f'(x) = 4x + 3	(d)	$x = \pm 1$		(b)	y = 3x - 3
3.	$f'(x) = 3x^2$	(e)	$x = \pm \sqrt{2}$		(c)	x = -2
0.	. 1				(d)	x = 14
4.	$f'(x) = -\frac{1}{x^2}$	7. (a)	4			
		(b)	y = 4x - 5	10.	(a)	3
5.	(a) -2	(c)	x = 1/3, -1		(b)	u - 3r
	(b) $y = -2x + 1$	(d)	$x = -\frac{1}{3} \pm \frac{\sqrt{7}}{3}$		(\mathbf{D})	g = 0 x
	(c) $x = 2$				(6)	x = -1
	(d) $x = 4$	8. (a)	-3/25			
		(b)	$y = -\frac{3}{25}x + \frac{16}{25}$	11.	(a)	1/2
6.	(a) 35	(c)	$x = \pm 1$		(b)	$y = \frac{1}{2}x - \frac{1}{2}$
	(b) $y = 35x - 98$				(c)	x = e