Section 2.2: Derivatives

Definition. For a function f, its derivative f^{\prime} is another function defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided this limit exists. If the derivative exists at $x=a$, we say f is differentiable at a.

THE BIG RESULT

Graphically, $f^{\prime}(a)$ is the slope of the tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$. That is,

$$
m_{\mathrm{tan} \text { at } x=a}=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Since the derivative is a slope, we have the following immediate results (see page ??):

- If $f^{\prime}(a)$ is positive, then the slope of the tangent line is positive and hence the graph of the function is increasing (\nearrow) at $x=a$.
- If $f^{\prime}(a)$ is negative, then the slope of the tangent line is negative and hence the graph of the function is decreasing (\searrow) at $x=a$.
- If $f^{\prime}(a)=0$, then the slope of the tangent line is zero and hence the graph has a horizontal tangent (\rightarrow) at $x=a$.
- If $f^{\prime}(a)$ is a large positive number, then the slope of the tangent line is a large positive number and hence the tangent line is near vertical. In this case, we say the function is rapidly increasing at $x=a$.
- If $f^{\prime}(a)$ is a small positive number, then the slope of the tangent line is a small positive number and hence the tangent line is near horizontal. In this case, we say the function is slowly increasing at $x=a$.

Notation. Let $y=f(x)$.

- The derivative may be denoted in the following ways:

$$
f^{\prime}(x) \quad \text { OR } \quad \frac{d}{d x} f(x) \quad \text { OR } \quad y^{\prime} \quad \text { OR } \quad \frac{d y}{d x} .
$$

- The derivative evaluated at a value of x, say for example $x=5$, may be denoted in the following ways:

$$
f^{\prime}(5) \quad \text { OR }\left.\quad \frac{d}{d x} f(x)\right|_{x=5} \quad \text { OR }\left.\quad y^{\prime}\right|_{x=5} \quad \text { OR }\left.\quad \frac{d y}{d x}\right|_{x=5} .
$$

Example 1. If $f(x)=x^{2}-4 x+1$, find f^{\prime} using the definition.
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-4(x+h)+1\right]-\left[x^{2}-4 x+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not x^{2}+2 x h+h^{2}-4 x-4 h+\not 1-\not x^{2}+4 x-\not x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-4 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2 x+h-4)}{\not h} \\
& =\lim _{h \rightarrow 0} 2 x+h-4 \\
& =2 x-4
\end{aligned}
$$

Example 2. Using the result in Example 1,
(a) find the slope of the tangent line to the graph of $f(x)=x^{2}-4 x+1$ at the point $(3,-2)$.
(b) find the slope of the tangent line to the graph of $f(x)=x^{2}-4 x+1$ at the point $(2,-3)$.

Solution.

(a) The slope of the tangent line is given by the derivative. Hence, we need to evaluate the derivative at $x=3$, the x-coordinate of the point $(3,-2)$. (Note that the derivative is $f^{\prime}(x)=2 x-4$, as calculated in Example 1 above.)

$$
m_{\mathrm{tan}} \text { at } x=3=f^{\prime}(3)=2(3)-4=6-4=2 \text {. }
$$

Since the derivative is positive, the slope of the tangent line is positive, and therefore the graph of the function is increasing (\nearrow) at $x=3$.
(b) The solution is identical to part (a), except we now evaluate the derivative at $x=2$, the x-coordinate of the point $(2,-3)$.

$$
m_{\mathrm{tan}} \text { at } x=2=f^{\prime}(2)=2(2)-4=4-4=0 .
$$

Since the derivative is zero, the slope of the tangent line is zero, and therefore the graph of the function has a horizontal tangent (\rightarrow) at $x=2$.

Here are the results of Example 2 illustrated on the graph of $f(x)=x^{2}-4 x+1$:

Example 3. Let $f(x)=x^{3}-3 x$.
(a) Find $f^{\prime}(x)$ using the definition.
(b) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(2,2)$.
(c) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(2,2)$.
(d) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.

Example 4. Find the equation of the tangent line to $f(x)=5+3 x-4 x^{2}$ at $x=1$.

Supplemental Exercises

Find the derivative of the following functions using the definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

1. $f(x)=x^{2}+5 x-1$
2. $f(x)=2 x^{2}+3 x+1$
3. $f(x)=x^{3}+5$
4. $f(x)=\frac{1}{x}$
5. If $f(x)=x^{2}-4 x+2$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=2 x-4 .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(1,-1)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(1,-1)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
(d) Find the value(s) of x at which the graph of $y=f(x)$ has a tangent line having slope 4.
6. If $f(x)=\frac{4}{3} x^{3}-x-26$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=4 x^{2}-1 .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(3,7)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(3,7)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
(d) Find the value(s) of x at which the graph of $y=f(x)$ has a tangent line having slope 3.
(e) Find the value(s) of x at which the graph of $y=f(x)$ has a tangent line having slope 7 .
7. If $f(x)=x^{3}+x^{2}-x-2$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=3 x^{2}+2 x-1 .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(1,-1)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(1,-1)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
(d) Find the value(s) of x at which the graph of $y=f(x)$ has a tangent line having slope 1 .
8. If $f(x)=\frac{x}{x^{2}+1}$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(2,2 / 5)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(2,2 / 5)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
9. If $f(x)=\frac{2}{3}(x+2)^{3 / 2}$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=\sqrt{x+2} .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(7,18)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(7,18)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
(d) Find the value(s) of x at which the graph of $y=f(x)$ has a tangent line having slope 4.
10. If $f(x)=3 x e^{x}$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=3 e^{x}+3 x e^{x} .
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(0,0)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(0,0)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.
11. If $f(x)=\frac{\ln x}{2 x}$, then it will soon be shown that its derivative is

$$
f^{\prime}(x)=\frac{1-\ln x}{2 x^{2}}
$$

(a) Find the slope of the tangent line to the graph of $y=f(x)$ at the point $(1,0)$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(1,0)$.
(c) Find the value(s) of x at which the graph of $y=f(x)$ has a horizontal tangent.

ANSWERS

1. $f^{\prime}(x)=2 x+5$
(c) $\quad x= \pm 1 / 2$
2. (a) 3
3. $f^{\prime}(x)=4 x+3$
(d) $x= \pm 1$
4. $f^{\prime}(x)=3 x^{2}$
(e) $x= \pm \sqrt{2}$
(b) $y=3 x-3$
(c) $x=-2$
(d) $\quad x=14$
5. $f^{\prime}(x)=-\frac{1}{x^{2}}$
6. (a) 4
(b) $y=4 x-5$
7. (a) -2
(c) $\quad x=1 / 3, \quad-1$
(b) $y=-2 x+1$
(c) $x=2$
(d) $x=4$
(d) $x=-\frac{1}{3} \pm \frac{\sqrt{7}}{3}$
8. (a) 3
(b) $y=3 x$
(c) $x=-1$
9. (a) $-3 / 25$
(b) $y=-\frac{3}{25} x+\frac{16}{25}$
10. (a) 35
(b) $y=35 x-98$
(c) $x= \pm 1$
11. (a) $1 / 2$
(b) $y=\frac{1}{2} x-\frac{1}{2}$
(c) $x=e$
