Section 2.1: Limits Graphically

Definition. We say that the limit of $f(x)$ as x approaches a is equal to L, written

$$
\lim _{x \rightarrow a} f(x)=L
$$

if we can make the values of $f(x)$ as close to L as we like by taking x to be sufficiently close to a, but not equal to a. In other words, as x approaches a (but never equaling a), $f(x)$ approaches L.

Definition. We say that the limit of $f(x)$ as x approaches a from the left is equal to L, written

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if we can make the values of $f(x)$ as close to L as we like by taking x to be sufficiently close to a, but strictly less than a (i.e., to the left of a as viewed on a number line). In other words, as x approaches a from the left (i.e., $x<a$), $f(x)$ approaches L.

Definition. We say that the limit of $f(x)$ as x approaches a from the right is equal to L, written

$$
\lim _{x \rightarrow a^{+}} f(x)=L,
$$

if we can make the values of $f(x)$ as close to L as we like by taking x to be sufficiently close to a, but strictly greater than a (i.e., to the right of a as viewed on a number line). In other words, as x approaches a from the right (i.e., $a<x), f(x)$ approaches L.

Definition. Limits taken from the left or the right are called one-sided limits.
Result. If both one-sided limits equal L, then the two-sided limit must also equal L. Conversely, if the two-sided limit equals L, then both one-sided limits must also equal L. That is,

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L
$$

Definition. The function f is continuous at $x=a$ provided $f(a)$ is defined, $\lim _{x \rightarrow a} f(x)$ exists, and

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

In other words, the value of the limit equals the value of the function. Graphically, the function f is continuous at $x=a$ provided the graph of $y=f(x)$ does not have any holes, jumps, or breaks at $x=a$. (That is, the function is connected at $x=a$.)

If f is not continuous at $x=a$, then we say f is discontinuous at $x=a$ (or f has a discontinuity at $x=a$).

Example 1. For the function f graphed below, find the following:

1. $\lim _{x \rightarrow-3^{-}} f(x)=$
2. $\lim _{x \rightarrow 2^{-}} f(x)=$
3. $\lim _{x \rightarrow 6^{-}} f(x)=$
4. $\lim _{x \rightarrow-3^{+}} f(x)=$
5. $\lim _{x \rightarrow 2^{+}} f(x)=$
6. $\lim _{x \rightarrow-3} f(x)=$
7. $\lim _{x \rightarrow 2} f(x)=$
8. $f(-3)=$
9. $f(2)=$
10. $\lim _{x \rightarrow 6^{+}} f(x)=$
11. $\lim _{x \rightarrow-1^{-}} f(x)=$
12. $\lim _{x \rightarrow 4^{-}} f(x)=$
13. $\lim _{x \rightarrow-1^{+}} f(x)=$
14. $\lim _{x \rightarrow 4^{+}} f(x)=$
15. $\lim _{x \rightarrow-1} f(x)=$
16. $\lim _{x \rightarrow 4} f(x)=$
17. $f(-1)=$
18. $f(4)=$
19. List the value(s) of x at which f is discontinuous.

Note that the function is continuous at $x=4$ and hence

$$
\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=f(4)=-1
$$

EXERCISES

For the function f graphed below, find the following:

1. $\lim _{x \rightarrow-5^{-}} f(x)=$
2. $\lim _{x \rightarrow-5^{+}} f(x)=$
3. $\lim _{x \rightarrow-5} f(x)=$
4. $f(-5)=$
5. $\lim _{x \rightarrow-2^{-}} f(x)=$
6. $\lim _{x \rightarrow-2^{+}} f(x)=$
7. $\lim _{x \rightarrow-2} f(x)=$
8. $f(-2)=$
9. $\lim _{x \rightarrow 0^{-}} f(x)=$
10. $\lim _{x \rightarrow 0^{+}} f(x)=$
11. $\lim _{x \rightarrow 0} f(x)=$
12. $f(0)=$
13. $\lim _{x \rightarrow 1^{-}} f(x)=$
14. $\lim _{x \rightarrow 1^{+}} f(x)=$
15. $\lim _{x \rightarrow 1} f(x)=$
16. $f(1)=$
17. $\lim _{x \rightarrow 3^{-}} f(x)=$
18. $\lim _{x \rightarrow 3^{+}} f(x)=$
19. $\lim _{x \rightarrow 3} f(x)=$
20. $\quad f(3)=$
21. $\lim _{x \rightarrow 4^{-}} f(x)=$
22. $\lim _{x \rightarrow 4^{+}} f(x)=$
23. $\lim _{x \rightarrow 4} f(x)=$
24. $f(4)=$
25. $\lim _{x \rightarrow 5^{-}} f(x)=$
26. $\lim _{x \rightarrow 5^{+}} f(x)=$
27. $\lim _{x \rightarrow 5} f(x)=$
28. $f(5)=$
29. List the value(s) of x at which f is discontinuous.

ANSWERS

1. 2
2. 6
3. 6
4. 7
5. 4
6. Does not exist
7. 7
8. 4
9. Does not exist
10. 2
11. 6
12. 6
13. Undefined
14. $x=-5,-2,1,3,4,5$
