The function \(f \) has limit \(L \) as \(x \) approaches \(a \), denoted
\[
\lim_{x \to a} f(x) = L,
\]
means that we can make \(f(x) \) as close to \(L \) as we like by making \(x \) sufficiently close to \(a \), but not equal to \(a \).

The function \(f \) has a right-hand limit \(L \) as \(x \) approaches \(a \), denoted
\[
\lim_{x \to a^+} f(x) = L,
\]
means we can make \(f(x) \) as close to \(L \) as we like by taking \(x \) sufficiently close, but not equal, to \(a \) and \(x \) to the right of \(a \).

The function \(f \) has a left-hand limit \(L \) as \(x \) approaches \(a \), denoted
\[
\lim_{x \to a^-} f(x) = L,
\]
means we can make \(f(x) \) as close to \(L \) as we like by taking \(x \) sufficiently close, but not equal, to \(a \) and \(x \) to the left of \(a \).