\qquad
SHOW ALL WORK FOR FULL CREDIT-PLEASE CIRCLE YOUR FINAL ANSWER GIVE ANSWERS TO TWO DECIMAL PLACES—ALL FIGURES ARE NOT DRAWN TO SCALE

1. Solve the triangle. (i.e., find A, B, and b).

2. Solve for angle C. Here angle C is acute.

3. Solve for b.

4. Solve for angle B. Here angle B is obtuse.

5. Solve for c.

6. Solve for a.

7. Find the period of

$$
y=\tan \left(2 x-\frac{\pi}{3}\right)
$$

and sketch the graph of one cycle. Be sure to indicate the spacing along the x axis.
9. Find the period of

$$
y=8 \sec \left(4 x-\frac{\pi}{2}\right)
$$

and sketch the graph of one cycle. Be sure to indicate the spacing along the x and y axes.
10. Find the amplitude, period, and phase shift of

$$
y=-\frac{1}{3} \sin \left(\frac{1}{40} x-\frac{\pi}{10}\right)
$$

and sketch the graph of one cycle. Be sure to indicate the spacing along the x and y axes.
11. Find the amplitude, period, and phase shift of

$$
y=5 \cos \left(\frac{1}{6} x+\frac{\pi}{2}\right)
$$

and sketch the graph of one cycle. Be sure to indicate the spacing along the x and y axes.
12. Find the amplitude, period, phase shift, and equation of the following sinusoid:

ANSWERS

1. $\quad A=51.06^{\circ} ; \quad B=38.94^{\circ} ; \quad b=5.66$
2. $\quad B=130.54^{\circ}$
3. $C=37.17^{\circ}$
4. $b=5.31$
5. $B=120.65^{\circ}$
6. $c=10.88$
7. $\quad a=21.34$
8. One cycle: $-\frac{\pi}{12}<x<\frac{5 \pi}{12}$

Period $=\pi / 2$;
Vertical asymptotes at $x=-\pi / 12,5 \pi / 12$; x-intercept at $(\pi / 6,0)$
10. One cycle: $4 \pi \leq x \leq 84 \pi$

Amplitude $=1 / 3$;
Period $=80 \pi$;
Phase shift $=4 \pi$;
x-axis spacing: $4 \pi, 24 \pi, 44 \pi, 64 \pi, 84 \pi$
11. One cycle: $-3 \pi \leq x \leq 9 \pi$

Amplitude $=5$;
Period $=12 \pi$;
Phase shift $=-3 \pi$;
x-axis spacing: $-3 \pi, 0,3 \pi, 6 \pi, 9 \pi$
12. Amplitude $=6$;

Period $=2 \pi / 3$;
Phase shift $=\pi / 6$;
Equation: $y=6 \sin \left(3 x-\frac{\pi}{2}\right)$
9. One cycle: $\frac{\pi}{8} \leq x \leq \frac{5 \pi}{8}$

Period $=\pi / 2$;
x-axis spacing: $\pi / 8, \pi / 4,3 \pi / 8, \pi / 2,5 \pi / 8$;
Vertical asymptotes at $x=\pi / 4, \pi / 2$

