MATH 11022: Angles

Definitions:

- An angle is a pair of rays having the same endpoint or vertex. An angle can also be formed by rotating a ray around its endpoint.
- Angles are drawn by showing the direction and amount of rotation from the initial side to the terminal side.
- If the rotation is counterclockwise, the angle is positive; if the rotation is clockwise, the angle is negative.
- Angles are usually denoted by lower case Greek letters:
α - "alpha" β - "beta" γ - "gamma" θ - "theta" ϕ - "phi"
Upper case English letters are also used to denote angles.
- An acute angle is an angle measuring more than 0° but less than 90°.
- A right angle is an angle measuring 90°.
- An obtuse angle is an angle measuring more than 90° but less than 180°.
- A straight angle is an angle measuring exactly 180°.
- Two angles are complementary angles if the sum of their measures is 90°.
- Two angles are supplementary angles if the sum of their measures is 180°.

Degree Measure

- $360^{\circ}=$ one revolution (measured counterclockwise)
- $1^{\circ}=\frac{1}{360}$ revolution

Degrees, Minutes, Seconds (DMS)

- One degree is equal to sixty minutes. That is,

$$
1^{\circ}=60^{\prime}
$$

- One minute is equal to sixty seconds. Hence,

$$
1^{\prime}=60^{\prime \prime} \quad \text { and } \quad 1^{\circ}=3600^{\prime \prime}
$$

Example 1: Convert $30^{\circ} 6^{\prime} 27^{\prime \prime}$ into decimal degrees.

Example 2: Convert $58^{\circ} 12^{\prime} 18^{\prime \prime}$ into decimal degrees.

Example 3: Convert 25.139° into DMS.

Definition. An angle θ is in standard position if its vertex is at the origin on a rectangular coordinate system and its initial side is the along the positive x-axis.

Definition. If the terminal side of θ lies on the x or y-axes, then θ is a quadrantal angle.

MEMORIZE You must memorize the quadrantal angles:

Example 4: Draw each angle:
(a) $\alpha=45^{\circ}$
(d) $\theta=480^{\circ}$
(b) $\beta=-45^{\circ}$
(e) $\phi=-225^{\circ}$
(c) $\gamma=230^{\circ}$
(f) $C=-310^{\circ}$

Definition. Angles that have the same initial and terminal sides are coterminal angles.
Result. Let θ be any angle. Then there are an infinite number of angles that are coterminal with θ. These coterminal angles all differ by a multiple of 360°.

Example 5: Give two positive and two negative angles that are coterminal with
(a) $\theta=40^{\circ}$
(b) $\theta=160^{\circ}$
(c) $\theta=-100^{\circ}$

