MATH 11022: Definition of Trigonometric Functions

Definition of the Trigonometric Functions: Let θ be an angle in standard position and let $P(x, y)$ be any point (other than the origin) on the terminal side of θ. Let r be the distance from the origin to the point P. (i.e., $r=\sqrt{x^{2}+y^{2}}$.) Then the six trigonometric functions of θ are

	"sine" "cosine"	$\begin{aligned} & \sin \theta=\frac{y}{r} \\ & \cos \theta=\frac{x}{r} \end{aligned}$	$\csc \theta=\frac{r}{y}$ $\sec \theta=\frac{r}{x}$	"cosecant" "secant"
${ }^{0} \quad x$	"tangent"	$\tan \theta=\frac{y}{x}$	$\cot \theta=\frac{1}{y}$	"cotangent"

MEMORIZE The above definition must be committed to memory.

NOTES:

- When the terminal side of θ lies on y-axis, the x-coordinate is zero. Therefore, $\tan \theta$ and $\sec \theta$ are undefined.
- When the terminal side of θ lies on x-axis, the y-coordinate is zero. Therefore, $\cot \theta$ and $\csc \theta$ are undefined.

Example 1: Find the value of the six trigonometric functions of the angle θ if P is a point on the terminal side of θ.
(a) $\quad P=(-4,-3)$
(b) $\quad P=(-\sqrt{5}, 3)$

Quadrant Signs of the Trigonometric Functions

- If the terminal side of θ lies in Quadrant I , then all six trigonometric functions of θ are positive.
- If the terminal side of θ lies in Quadrant II, then only $\sin \theta$ and $\csc \theta$ are positive.
- If the terminal side of θ lies in Quadrant III, then only $\tan \theta$ and $\cot \theta$ are positive.
- If the terminal side of θ lies in Quadrant IV, then only $\cos \theta$ and $\sec \theta$ are positive.

MEMORIZE The above result must be committed to memory.

"AllSinTanCos"

Example 2: Without using a calculator, determine if the following are positive or negative:
(a) $\sin 100^{\circ}$
(d) $\sin \left(-210^{\circ}\right)$
(b) $\cos 220^{\circ}$
(e) $\cos \left(-130^{\circ}\right)$
(c) $\tan 340^{\circ}$
(f) $\tan \left(-330^{\circ}\right)$

Example 3:

(a) If $\sin \theta$ is negative and $\tan \theta$ is negative, then θ lies in which quadrant(s)?
(b) If $\cos \theta$ is negative and $\sin \theta$ is positive, then θ lies in which quadrant(s)?
(c) If $\csc \theta$ is negative and $\cot \theta$ is positive, then θ lies in which quadrant(s)?
(d) If $\sin \theta$ is positive, then θ lies in which quadrant(s)?
(e) If $\tan \theta$ is negative, then θ lies in which quadrant(s)?

Example 4: If $\sin \theta=\frac{3}{7}$ and $\cos \theta$ is negative, find the value of the other five trigonometric functions.

Example 5: If $\cos \theta=\frac{2}{3}$ and $\tan \theta$ is negative, find the value of the other five trigonometric functions.

Example 6: If $\tan \theta=-\frac{2}{9}$, find the value of $\sin \theta$ and $\cos \theta$.

