MATH 11022: Inverse Trig Functions

Definition. The inverse sine function, denoted \sin^{-1} , is defined by

 $\sin^{-1} x = \theta \quad \longleftarrow \text{ is the same as } \longrightarrow \quad \sin \theta = x,$

where $-1 \le x \le 1$ and $-90^{\circ} \le \theta \le 90^{\circ}$. That is, $\underline{\theta}$ is an angle in the 1st or 4th quadrant.

The inverse sine function is also called the **arcsine function** and is denoted arcsin.

Example 1: Find the exact value of

(a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) =$$
 (d) $\arcsin\left(-\frac{1}{2}\right) =$

(b)
$$\operatorname{arcsin}\left(\frac{1}{2}\right) =$$
 (e) $\operatorname{sin}^{-1}(1) =$

(c)
$$\operatorname{arcsin}\left(-\frac{1}{\sqrt{2}}\right) =$$
 (f) $\operatorname{sin}^{-1}(0) =$

Example 2: On a calculator, find the following (accurate to two decimal places):

(a)
$$\sin^{-1}(0.3) =$$
 (c) $\arcsin(0.197) =$

(b)
$$\operatorname{arcsin}(-0.97) =$$
 (d) $\operatorname{sin}^{-1}(2.5) =$

Definition. The inverse cosine function, denoted \cos^{-1} , is defined by

 $\cos^{-1} x = \theta \quad \longleftarrow \text{ is the same as } \longrightarrow \quad \cos \theta = x,$

where $-1 \le x \le 1$ and $0^{\circ} \le \theta \le 180^{\circ}$. That is, $\underline{\theta}$ is an angle in the 1st or 2nd quadrant. The inverse cosine function is also called the **arccosine function** and is denoted arccos. **Example 3:** Find the exact value of

(a)
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) =$$
 (d) $\arccos\left(-\frac{\sqrt{3}}{2}\right) =$

(b)
$$\arccos\left(-\frac{1}{\sqrt{2}}\right) =$$
 (e) $\cos^{-1}(0) =$

(c)
$$\arccos\left(-\frac{1}{2}\right) =$$
 (f) $\cos^{-1}(-1) =$

Example 4: On a calculator, find the following (accurate to two decimal places):

(a)
$$\cos^{-1}(0.53) =$$
 (c) $\arccos(-0.8) =$

(b)
$$\arccos(0.178) =$$
 (d) $\cos^{-1}(3.6) =$

Definition. The inverse tangent function, denoted \tan^{-1} , is defined by

$$\tan^{-1} x = \theta \quad \longleftarrow \text{ is the same as } \longrightarrow \quad \tan \theta = x,$$

where $-\infty < x < \infty$ and $-90^{\circ} < \theta < 90^{\circ}$. That is, $\underline{\theta}$ is an angle in the 1st or 4th quadrant. The inverse tangent function is also called the **arctangent function** and is denoted arctan.

Example 5: Find the exact value of

(a)
$$\tan^{-1}(\sqrt{3}) =$$
 (d) $\arctan(-1) =$

(b)
$$\arctan\left(-\frac{1}{\sqrt{3}}\right) =$$
 (e) $\tan^{-1}\left(-\sqrt{3}\right) =$

(c)
$$\tan^{-1}(1) =$$
 (f) $\arctan(0) =$

Example 6: On a calculator, find the following (accurate to two decimal places):

(a)
$$\tan^{-1}(0.82) =$$
 (c) $\tan^{-1}(1000) =$

(b)
$$\arctan(-3.7) =$$
 (d) $\tan^{-1}(100,000) =$

Example 7: Find the exact value of

(a)
$$\sin\left[\arccos\left(\frac{1}{2}\right)\right] =$$

(b)
$$\tan\left[\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right] =$$

(c)
$$\cos \left[\arctan(-1)\right] =$$

(d)
$$\sec\left[\arcsin\left(\frac{1}{2}\right)\right] =$$

(e)
$$\cot\left[\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right] =$$

(f)
$$\sin\left[\tan^{-1}\left(\sqrt{3}\right)\right] =$$

Example 8: Find the exact value of

(a)
$$\sin\left[\arctan\left(-\frac{4}{3}\right)\right] =$$

(b)
$$\sec\left[\sin^{-1}\left(\frac{1}{5}\right)\right] =$$

(c)
$$\tan\left[\arccos\left(-\frac{2}{5}\right)\right] =$$

(d)
$$\sin\left[\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(-\frac{4}{5}\right)\right] =$$

(e) $\cos[2\arctan(3)] =$