MATH 11022: Inverse Trig Functions

Definition. The inverse sine function, denoted $\sin ^{-1}$, is defined by

$$
\sin ^{-1} x=\theta \quad \longleftarrow \text { is the same as } \longrightarrow \quad \sin \theta=x
$$

where $-1 \leq x \leq 1$ and $-90^{\circ} \leq \theta \leq 90^{\circ}$. That is, θ is an angle in the 1 st or 4th quadrant.
The inverse sine function is also called the arcsine function and is denoted arcsin.

Example 1: Find the exact value of
(a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$
(d) $\arcsin \left(-\frac{1}{2}\right)=$
(b) $\quad \arcsin \left(\frac{1}{2}\right)=$
(e) $\sin ^{-1}(1)=$
(c) $\quad \arcsin \left(-\frac{1}{\sqrt{2}}\right)=$
(f) $\quad \sin ^{-1}(0)=$

Example 2: On a calculator, find the following (accurate to two decimal places):
(a) $\sin ^{-1}(0.3)=$
(c) $\quad \arcsin (0.197)=$
(b) $\arcsin (-0.97)=$
(d) $\sin ^{-1}(2.5)=$

Definition. The inverse cosine function, denoted $\cos ^{-1}$, is defined by

$$
\cos ^{-1} x=\theta \quad \longleftarrow \text { is the same as } \longrightarrow \quad \cos \theta=x
$$

where $-1 \leq x \leq 1$ and $0^{\circ} \leq \theta \leq 180^{\circ}$. That is, θ is an angle in the 1 st or 2 nd quadrant.
The inverse cosine function is also called the arccosine function and is denoted arccos.
Example 3: Find the exact value of
(a) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$
(d) $\quad \arccos \left(-\frac{\sqrt{3}}{2}\right)=$
(b) $\quad \arccos \left(-\frac{1}{\sqrt{2}}\right)=$
(e) $\cos ^{-1}(0)=$
(c) $\arccos \left(-\frac{1}{2}\right)=$
(f) $\cos ^{-1}(-1)=$

Example 4: On a calculator, find the following (accurate to two decimal places):
(a) $\cos ^{-1}(0.53)=$
(c) $\arccos (-0.8)=$
(b) $\arccos (0.178)=$
(d) $\cos ^{-1}(3.6)=$

Definition. The inverse tangent function, denoted $\tan ^{-1}$, is defined by

$$
\tan ^{-1} x=\theta \quad \longleftarrow \text { is the same as } \longrightarrow \quad \tan \theta=x
$$

where $-\infty<x<\infty$ and $-90^{\circ}<\theta<90^{\circ}$. That is, θ is an angle in the 1 st or 4th quadrant. The inverse tangent function is also called the arctangent function and is denoted arctan. Example 5: Find the exact value of
(a) $\tan ^{-1}(\sqrt{3})=$
(d) $\arctan (-1)=$
(b) $\quad \arctan \left(-\frac{1}{\sqrt{3}}\right)=$
(e) $\tan ^{-1}(-\sqrt{3})=$
(c) $\tan ^{-1}(1)=$
(f) $\quad \arctan (0)=$

Example 6: On a calculator, find the following (accurate to two decimal places):
(a) $\tan ^{-1}(0.82)=$
(c) $\tan ^{-1}(1000)=$
(b) $\arctan (-3.7)=$
(d) $\tan ^{-1}(100,000)=$

Example 7: Find the exact value of
(a) $\sin \left[\arccos \left(\frac{1}{2}\right)\right]=$
(b) $\tan \left[\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right]=$
(c) $\cos [\arctan (-1)]=$
(d) $\sec \left[\arcsin \left(\frac{1}{2}\right)\right]=$
(e) $\quad \cot \left[\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right]=$
(f) $\quad \sin \left[\tan ^{-1}(\sqrt{3})\right]=$

Example 8: Find the exact value of
(a) $\sin \left[\arctan \left(-\frac{4}{3}\right)\right]=$
(b) $\sec \left[\sin ^{-1}\left(\frac{1}{5}\right)\right]=$
(c) $\tan \left[\arccos \left(-\frac{2}{5}\right)\right]=$
(d) $\sin \left[\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(-\frac{4}{5}\right)\right]=$
(e) $\quad \cos [2 \arctan (3)]=$

