MATH 11022: Polar Coordinates

Definition. This is the polar coordinate system:

Any point P in the plane can be represented by an ordered pair $P = (r, \theta)$, called the **polar** coordinates of P, where r is the distance from O to P and θ is the angle between the polar axis and the segment \overline{OP} .

Notes:

- If r is negative, then (r, θ) is defined to be the point that lies |r| units from the pole in the direction opposite to that given by θ .
- Points in the plane do not have a unique polar representation. For example, $(2, 30^{\circ})$, $(2, 390^{\circ})$, $(2, -330^{\circ})$, and $(-2, 210^{\circ})$ all represent the same point. In general, any point (r, θ) can also be represented by

$$(r, \theta + 360^{\circ}n)$$
 and $(-r, \theta + 180^{\circ}(2n+1)),$

for any integer n. In particular, note that $(-r, \theta)$ and $(r, \theta + 180^{\circ})$ represent the same point.

• The pole O is represented by the polar coordinates $(0, \theta)$, for any angle θ .

Example 1: Plot the following points:

$$A = (2, 60^{\circ}) \qquad \qquad G = (-4, 150^{\circ})$$

 $B = (2, 420^{\circ}) \qquad \qquad H = (-3, -90^{\circ})$

$$C = (2, -60^{\circ}) \qquad \qquad I = (-4, -45^{\circ})$$

 $D = (-2, 60^{\circ}) \qquad \qquad J = (0, 135^{\circ})$

$$E = (2, 240^{\circ})$$
 $K = (4, 15^{\circ})$

$$F = (3, 135^{\circ}) \qquad \qquad L = (-3, 165^{\circ})$$

RELATIONSHIP BETWEEN POLAR AND RECTANGULAR COORDINATES • To change from polar to rectangular coordinates, use the formulas $x = r \cos \theta$ and $y = r \sin \theta$ • To change from rectangular to polar coordinates, use the formulas 1. $r = \sqrt{x^2 + y^2}$ 2. $\theta = \tan^{-1}\left(\frac{y}{x}\right)$, if x > 0, 3. $\theta = \tan^{-1}\left(\frac{y}{x}\right) + 180^\circ$, if x < 0.

Example 2: Find the rectangular coordinates of the following points. Give answers to two decimal places.

(a) $(3, 120^{\circ})$

(b) $(2, 230^{\circ})$

Example 3: Find polar coordinates for the following points. Give θ as a positive angle, accurate to two decimal places.

(a) $(1,\sqrt{3})$

(b)
$$(-2, -2)$$

(c) (4, -1)

(d) (-3,2)