MATH 11022: Radians

Definition: An angle with its vertex at the center of a circle (called a central angle) that intercepts an arc on the circle in length to the radius of the circle has a measure of one radian.

RADIANS-DEGREES
$\pi \mathrm{rad}=180^{\circ} \quad$ and $\quad 2 \pi \mathrm{rad}=360^{\circ}$

Conversion Factors

- To convert from radians into degrees, multiply by $\frac{180^{\circ}}{\pi}$.
- To convert from degrees into radians, multiply by $\frac{\pi}{180^{\circ}}$.

Example 1: Convert to degrees:
(a) $\frac{5 \pi}{4}$
(b) $\frac{3 \pi}{2}$
(c) $\frac{\pi}{6}$
(d) $\frac{4 \pi}{3}$

Example 2: Convert to radians:
(a) 60°
(b) 90°
(c) -45°
(d) 240°

NOTES:

- If a given angle has no units, then it is assumed to be measured in radians. That is, radian measure is unitless.
- Radian measure amounts to measuring angles in terms of real numbers which is necessary in Calculus.
- Radian measure allows us to treat the trigonometric functions as functions with domains of real numbers rather than angles.
- It is NOT true that all angles given in radians must contain π.
- NOTATION: Angles denoted by the variable x are always given in radians. Angles denoted by a Greek letter are usually given in degrees.

Example 3: Find the exact value of
(a) $\sin \frac{5 \pi}{6}=$
(b) $\quad \cos \frac{5 \pi}{3}=$
(c) $\tan \left(-\frac{11 \pi}{6}\right)=$
(d) $\sin \pi=$

Arc Length

The length s of the arc intercepted on a circle of radius r by a central angle θ, measured in radians, is

$$
s=r \theta
$$

Example 4: Find the length of the arc intercepted by a central angle of 3.6 rad on a circle of radius 24 cm .

Example 5: What is the measure (in radians) of a central angle which intercepts an arc of 13 cm on a circle of radius 5 cm ?

Area of a Sector

The area of a sector of a circle of radius r and central angle θ, measured in radians, is

$$
A=\frac{1}{2} r^{2} \theta
$$

Example. For a circle of radius 10 cm , find the length of the arc intercepted by a central angle of 2.3 rad and then find the area of this sector.

