MATH 11022: Graphs of Sine and Cosine

Definition. A function f is **periodic** if there is a positive number p such that f(x+p) = f(x). The smallest such positive number is the **period** of f. If f has period p, then one **cycle** of f is the graph of f over any interval of length p.

PERIODIC PROPERTIES OF THE TRIGONOMETRIC FUNCTIONS The functions sine, cosecant, cosine, and secant have period 2π (or 360°). That is, $\sin(\theta + 360^\circ) = \sin\theta$ $\sin(x+2\pi) = \sin x$ or $\cos(x+2\pi) = \cos x$ $\cos(\theta + 360^\circ) = \cos\theta$ or $\csc(x+2\pi) = \csc x$ $\csc(\theta + 360^\circ) = \csc\theta$ or $\sec(\theta + 360^\circ) = \sec\theta$ $\sec(x+2\pi) = \sec x$ or The functions tangent and cotangent have period π (or 180°). That is, $\tan(x+\pi) = \tan x$ $\tan(\theta + 180^\circ) = \tan\theta$ or $\cot(x+\pi) = \cot x$ $\cot(\theta + 180^\circ) = \cot\theta$ or

Example 1: Graph $y = \sin x$

Example 2: Graph $y = \cos x$

Results:

- One cycle is from $0 \le x \le 2\pi$.
- The domains of $f(x) = \sin x$ and $g(x) = \cos x$ are all real numbers \mathbb{R} .
- For all x, $-1 \le \sin x \le 1$ and $-1 \le \cos x \le 1$

Example 3: Graph one cycle of

(a) $y = \sin x + 2$

(b) $y = \cos x - 1$

(c) $y = -\sin x$

(d) $y = -\cos x$

Definition. For the functions

 $y = a \sin x$ and $y = a \cos x$

the number |a| is called the **amplitude** of the graph and is one half the difference between the curve's maximum and minimum values.

Example 4: Graph one cycle of

(a) $y = 3\sin x$

(b) $y = -2\cos x$

Result. The sine and cosine curves

 $y = a\sin(kx)$ and $y = a\cos(kx)$

have amplitude |a| and period $\frac{2\pi}{k}$.

Example 5: Find the amplitude and period of the following functions and sketch the graph of one cycle.

(a) $y = 5\cos\left(\frac{\pi}{2}x\right)$

(b)
$$y = -2\sin(\frac{1}{4}x)$$

(c) $y = -3\cos(\pi x)$

(d) $y = 7\sin(4x)$

Result. The sine and cosine curves

 $y = a \sin[k(x - \phi)]$ and $y = a \cos[k(x - \phi)]$

have amplitude |a|, period $\frac{2\pi}{k}$, and **phase shift** ϕ . The angle ϕ is also called the **phase constant** or **phase angle**.

Definition. The graph of $y = a \sin[k(x - b)]$ is called a **sinusoid**.

Example 6: Find the amplitude, period, and phase shift of the following functions and sketch the graph of one cycle.

(a)
$$y = 2\sin(4x - \pi)$$

(b) $y = -3\cos(2x + \frac{\pi}{2})$

(c) $y = 4\cos(\frac{\pi}{2}x + \pi)$

Example 7: Find the amplitude, period, phase shift, and equation of the following sinusoids.

(a)

(b)

