MATH 11022: Graphs of Sine and Cosine

Definition. A function f is periodic if there is a positive number p such that $f(x+p)=f(x)$. The smallest such positive number is the period of f. If f has period p, then one cycle of f is the graph of f over any interval of length p.

Periodic Properties of the Trigonometric Functions

The functions sine, cosecant, cosine, and secant have period 2π (or 360°). That is,

$$
\begin{array}{lll}
\sin (x+2 \pi)=\sin x & \text { or } & \sin \left(\theta+360^{\circ}\right)=\sin \theta \\
\cos (x+2 \pi)=\cos x & \text { or } & \cos \left(\theta+360^{\circ}\right)=\cos \theta \\
\csc (x+2 \pi)=\csc x & \text { or } & \csc \left(\theta+360^{\circ}\right)=\csc \theta \\
\sec (x+2 \pi)=\sec x & \text { or } & \sec \left(\theta+360^{\circ}\right)=\sec \theta
\end{array}
$$

The functions tangent and cotangent have period π (or 180°). That is,

$$
\begin{array}{lll}
\tan (x+\pi)=\tan x & \text { or } & \tan \left(\theta+180^{\circ}\right)=\tan \theta \\
\cot (x+\pi)=\cot x & \text { or } & \cot \left(\theta+180^{\circ}\right)=\cot \theta
\end{array}
$$

Example 1: Graph $y=\sin x$

Example 2: Graph $y=\cos x$

Results:

- One cycle is from $0 \leq x \leq 2 \pi$.
- The domains of $f(x)=\sin x$ and $g(x)=\cos x$ are all real numbers \mathbb{R}.
- For all $x,-1 \leq \sin x \leq 1$ and $-1 \leq \cos x \leq 1$

Example 3: Graph one cycle of
(a) $y=\sin x+2$
(b) $y=\cos x-1$
(c) $y=-\sin x$
(d) $y=-\cos x$

Definition. For the functions

$$
y=a \sin x \quad \text { and } \quad y=a \cos x
$$

the number $|a|$ is called the amplitude of the graph and is one half the difference between the curve's maximum and minimum values.

Example 4: Graph one cycle of
(a) $y=3 \sin x$
(b) $y=-2 \cos x$

Result. The sine and cosine curves

$$
y=a \sin (k x) \quad \text { and } \quad y=a \cos (k x)
$$

have amplitude $|a|$ and period $\frac{2 \pi}{k}$.

Example 5: Find the amplitude and period of the following functions and sketch the graph of one cycle.
(a) $y=5 \cos \left(\frac{\pi}{2} x\right)$
(b) $y=-2 \sin \left(\frac{1}{4} x\right)$
(c) $y=-3 \cos (\pi x)$
(d) $y=7 \sin (4 x)$

Result. The sine and cosine curves

$$
y=a \sin [k(x-\phi)] \quad \text { and } \quad y=a \cos [k(x-\phi)]
$$

have amplitude $|a|$, period $\frac{2 \pi}{k}$, and phase shift ϕ. The angle ϕ is also called the phase constant or phase angle.

Definition. The graph of $y=a \sin [k(x-b)]$ is called a sinusoid.

Example 6: Find the amplitude, period, and phase shift of the following functions and sketch the graph of one cycle.
(a) $y=2 \sin (4 x-\pi)$
(b) $y=-3 \cos \left(2 x+\frac{\pi}{2}\right)$
(c) $\quad y=4 \cos \left(\frac{\pi}{2} x+\pi\right)$

Example 7: Find the amplitude, period, phase shift, and equation of the following sinusoids.
(a)

(b)

(c)

(d)

