MATH 11022: Trigonometric Functions of Non-Acute Angles

Definitions: Let θ be a nonquadrantal angle in standard position with point (x, y) on its terminal side. Then the right triangle formed by dropping a perpendicular line segment from (x, y) to the x-axis is called the reference triangle. The reference angle for θ, denoted θ^{\prime}, is the acute angle formed between the terminal side of θ and the x-axis.

Example 1: Find the reference angle θ^{\prime} for the following:
(a) $\theta=150^{\circ}$
(d) $\theta=-135^{\circ}$
(b) $\theta=220^{\circ}$
(e) $\theta=-315^{\circ}$
(c) $\theta=300^{\circ}$
(f) $\theta=-236^{\circ}$

The Reduction Principle

The trigonometric functions of any nonquadrantal angle θ are equal to those of the reference angle θ^{\prime} associated with θ, except possibly for the sign (positive or negative). The sign can be determined by considering the quadrant in which the terminal side of θ lies.

Example 2: Find the exact value of the following:
(a) $\sin 225^{\circ}$
(f) $\cot 330^{\circ}$
(b) $\cos 300^{\circ}$
(g) $\sec \left(-30^{\circ}\right)$
(c) $\tan 120^{\circ}$
(h) $\csc 225^{\circ}$
(d) $\sin \left(-225^{\circ}\right)$
(i) $\sin 270^{\circ}$
(e) $\cos \left(-150^{\circ}\right)$
(j) $\cos 135^{\circ}$

IMPORTANT EFFECTIVE IMMEDIATELY, you must be able to quickly (and correctly) find the exact trigonometric values of the following angles:

Coterminal Angles	
For any integer n,	
$\sin \left(\theta+360^{\circ} n\right)$	$=\sin \theta$
$\cos \left(\theta+360^{\circ} n\right)$	$=\cos \theta$
$\tan \left(\theta+360^{\circ} n\right)$	$=\tan \theta$

Example 3: Find the exact value of
(a) $\sin 420^{\circ}=$
(b) $\cos 840^{\circ}=$
(c) $\tan \left(-675^{\circ}\right)=$

Example 4: Find all angles, $0^{\circ} \leq \theta<360^{\circ}$ for which
(a) $\sin \theta=\frac{1}{2}$
(d) $\tan \theta=-1$
(b) $\cos \theta=\frac{\sqrt{2}}{2}$
(e) $\cos \theta=0$
(c) $\sin \theta=-\frac{\sqrt{3}}{2}$
(f) $\sin \theta=-\frac{1}{\sqrt{2}}$

