MATH 11022: Trigonometric Functions of Non-Acute Angles

Definitions: Let θ be a nonquadrantal angle in standard position with point (x, y) on its terminal side. Then the right triangle formed by dropping a perpendicular line segment from (x, y) to the x-axis is called the **reference triangle**. The **reference angle** for θ , denoted θ' , is the acute angle formed between the terminal side of θ and the x-axis.

Example 1: Find the reference angle θ' for the following:

(a)
$$\theta = 150^{\circ}$$
 (d) $\theta = -135^{\circ}$

(b)
$$\theta = 220^{\circ}$$
 (e) $\theta = -315^{\circ}$

(c)
$$\theta = 300^{\circ}$$
 (f) $\theta = -236^{\circ}$

The Reduction Principle

The trigonometric functions of any nonquadrantal angle θ are equal to those of the reference angle θ' associated with θ , except possibly for the sign (positive or negative). The sign can be determined by considering the quadrant in which the terminal side of θ lies.

Example 2: Find the exact value of the following:

- (a) $\sin 225^{\circ}$ (f) $\cot 330^{\circ}$
- (b) $\cos 300^{\circ}$ (g) $\sec(-30^{\circ})$
- (c) $\tan 120^{\circ}$ (h) $\csc 225^{\circ}$
- (d) $\sin(-225^{\circ})$ (i) $\sin 270^{\circ}$

(e) $\cos(-150^{\circ})$ (j) $\cos 135^{\circ}$

IMPORTANT *EFFECTIVE IMMEDIATELY*, you must be able to quickly (and correctly) find the **exact** trigonometric values of the following angles:

Coterminal Angles	
For any integer n ,	
$\sin(\theta + 360^{\circ}n) = \sin\theta$	
$\cos(\theta + 360^{\circ}n) = \cos\theta$	
$\tan(\theta + 360^{\circ}n) = \tan\theta$	

Example 3: Find the exact value of

(a) $\sin 420^{\circ} =$

(b) $\cos 840^{\circ} =$

Example 4: Find all angles, $0^{\circ} \le \theta < 360^{\circ}$ for which

(a)
$$\sin \theta = \frac{1}{2}$$
 (d) $\tan \theta = -1$

(b)
$$\cos\theta = \frac{\sqrt{2}}{2}$$
 (e) $\cos\theta = 0$

(c)
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
 (f) $\sin \theta = -\frac{1}{\sqrt{2}}$