MATH 11022: Vectors

Definition. A vector is a quantity that has both magnitude and direction.

Definition. A scalar is a quantity that can be completely specified by a single number and unit, and therefore have only magnitude and not direction.

Definition. A geometric vector in the plane is a quantity that possesses both a length and a direction and can be represented by a directed line segment.

Definition. The **magnitude** (or **length**, or **norm**) of the vector \mathbf{A} , denoted $||\mathbf{A}||$ (or $|\mathbf{A}|$), is the length of the directed line segment.

Definition. Two vectors are **equal** if they have the same magnitude and direction. Thus, a vector may be translated from one location to another as long as the magnitude and direction are not changed.

Definition. The vector $-\mathbf{A}$ has the same magnitude as \mathbf{A} , but has the opposite direction as \mathbf{A} .

Definition. For any number n, the vector $n\mathbf{A}$ is called a **scalar multiple of A**. If n is positive, then the vector $n\mathbf{A}$ has the same direction as \mathbf{A} , but has magnitude $n||\mathbf{A}||$. If n is negative, then the vector $n\mathbf{A}$ has the opposite direction as \mathbf{A} and has magnitude $|n|||\mathbf{A}||$. If n is zero, then $n\mathbf{A}$ is the **zero vector 0** and has magnitude 0 and is assigned no direction.

Result. The sum of two vectors \mathbf{A} and \mathbf{B} can be found using the **tail-to-tip rule**: translate \mathbf{B} so that its tail end is at the tip end of \mathbf{A} . Then the vector from the tail end of \mathbf{A} to the tip end of \mathbf{B} is called the **resultant vector** \mathbf{R} and is the vector sum of \mathbf{A} and \mathbf{B} . That is, $\mathbf{R} = \mathbf{A} + \mathbf{B}$.

Note. The sum of two (nonparallel) vectors **A** and **B** can also be found using the **parallel-ogram rule**: the sum of (nonparallel) vectors **A** and **B** is the diagonal of the parallelogram formed using **A** and **B** as adjacent sides.