MATH 11022: Vectors

Definition. A vector is a quantity that has both magnitude and direction.

Definition. A scalar is a quantity that can be completely specified by a single number and unit, and therefore have only magnitude and not direction.

Definition. A geometric vector in the plane is a quantity that possesses both a length and a direction and can be represented by a directed line segment.

Definition. The magnitude (or length, or norm) of the vector \mathbf{A}, denoted $\|\mathbf{A}\|$ (or $|\mathbf{A}|$), is the length of the directed line segment.

Definition. Two vectors are equal if they have the same magnitude and direction. Thus, a vector may be translated from one location to another as long as the magnitude and direction are not changed.

Definition. The vector - \mathbf{A} has the same magnitude as \mathbf{A}, but has the opposite direction as A.

Definition. For any number n, the vector $n \mathbf{A}$ is called a scalar multiple of \mathbf{A}. If n is positive, then the vector $n \mathbf{A}$ has the same direction as \mathbf{A}, but has magnitude $n\|\mathbf{A}\|$. If n is negative, then the vector $n \mathbf{A}$ has the opposite direction as \mathbf{A} and has magnitude $|n|\|\mathbf{A}\|$. If n is zero, then $n \mathbf{A}$ is the zero vector $\mathbf{0}$ and has magnitude 0 and is assigned no direction.

Result. The sum of two vectors \mathbf{A} and \mathbf{B} can be found using the tail-to-tip rule: translate \mathbf{B} so that its tail end is at the tip end of \mathbf{A}. Then the vector from the tail end of \mathbf{A} to the tip end of \mathbf{B} is called the resultant vector \mathbf{R} and is the vector sum of \mathbf{A} and \mathbf{B}. That is, $\mathbf{R}=\mathbf{A}+\mathbf{B}$.

Note. The sum of two (nonparallel) vectors \mathbf{A} and \mathbf{B} can also be found using the parallelogram rule: the sum of (nonparallel) vectors \mathbf{A} and \mathbf{B} is the diagonal of the parallelogram formed using \mathbf{A} and \mathbf{B} as adjacent sides.

