The 1st Derivative Test

The 1st Derivative Test (page 241)

Let $x=c$ be a critical number for a function that is continuous on an open interval (a, b) containing c. If f is differentiable on (a, b), except possibly at $x=c$, then $f(c)$ can be classified as follows:

1. If $f^{\prime}(x)$ changes sign from negative to positive at $x=c$, then the point $(c, f(c))$ is a relative minimum of f.
2. If $f^{\prime}(x)$ changes sign from positive to negative at $x=c$, then the point $(c, f(c))$ is a relative maximum of f.
3. If $f^{\prime}(x)$ does not change sign from positive to negative (or vice versa) at $x=c$, then f does not have a relative max or min at the point $(c, f(c))$.

How to find relative extrema using the 1st Derivative Test

STEP I: Find the points $x=c$ in the domain of f where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist, i.e. the critical numbers of f.

STEP II: Plot these points on a number line.
STEP III: Determine the sign of f^{\prime} both to the left and right of these critical numbers by evaluating f^{\prime} at "test points." Keep in mind that if $f^{\prime}>0$, then the function is increasing (\nearrow), and if $f^{\prime}<0$, then the function is decreasing (\searrow).

STEP IV:

(a) If f^{\prime} changes from - to + at $x=c$ (i.e. \searrow to \nearrow), then $f(c)$ is a relative minimum.
(b) If f^{\prime} changes from + to - at $x=c$ (i.e. \nearrow to \searrow), then $f(c)$ is a relative maximum.
(c) If f^{\prime} does not change sign at $x=c$ (i.e. \searrow to $\searrow \mathrm{OR} \nearrow$ to \nearrow), then $f(c)$ is neither a relative max or min.

