The 2nd Derivative Test

The 2nd Derivative Test (page 245)
Let f be a function such that $f^{\prime}(c)=0$ and $f^{\prime \prime}$ exists on an open interval containing $x=c$.

1. If $f^{\prime \prime}(c)>0$, then the point $(c, f(c))$ is a relative minimum,
2. if $f^{\prime \prime}(c)<0$, then the point $(c, f(c))$ is a relative maximum,
3. if $f^{\prime \prime}(c)=0$, then no conclusion can be made about the point $(c, f(c))$. Use the 1 st Derivative Test to determine if $x=c$ is a relative max or min.

How to find relative extrema using the 2nd Derivative Test
STEP I: Find the numbers $x=c$ where $f^{\prime}(c)=0$.
(Note: If there is a point $x=c$ in the domain of f where $f^{\prime}(c)$ does not exist, then you must test this point by the 1st Derivative Test.)

STEP II: Calculate $f^{\prime \prime}(x)$.
STEP III: (a) If $f^{\prime \prime}(c)>0$, then $f(c)$ is a relative minimum.
(b) If $f^{\prime \prime}(c)<0$, then $f(c)$ is a relative maximum.
(c) If $f^{\prime \prime}(c)=0$, then no conclusion can be made about this number. Use the 1st Derivative Test.

EXAMPLE: Find the relative extrema of $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-12 x+1$.
STEP I: $f^{\prime}(x)=x^{2}+x-12=(x+4)(x-3)$. So,

$$
(x+4)(x-3)=0 \quad \Longrightarrow \quad x=-4 \text { or } x=3
$$

STEP II: $f^{\prime \prime}(x)=2 x+1$.
STEP III: $f^{\prime \prime}(-4)=2(-4)+1=-7<0$ (concave down \bigcap), so a relative maximum occurs at $x=-4$. The relative maximum is

$$
f(-4)=\frac{1}{3}(-4)^{3}+\frac{1}{2}(-4)^{2}-12(-4)+1=107 / 3
$$

Also, $f^{\prime \prime}(3)=2(3)+1=7>0$ (concave up \bigcup), so a relative minimum occurs at $x=3$. The relative minimum is

$$
f(3)=\frac{1}{3}(3)^{3}+\frac{1}{2}(3)^{2}-12(3)+1=-43 / 2 .
$$

