1. Evaluate the limit, if it exists.

 (a) \(\lim_{x \to -2} \left[\frac{1}{x + 2} + \frac{4}{x^2 - 4} \right] = \)

 (b) \(\lim_{x \to 0} \frac{(x - 4)^2 - 16}{x} = \)

 (c) \(\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2} = \)

 (d) \(\lim_{x \to -3} \frac{2x^2 - 5x - 3}{x^2 + 2x - 15} = \)

 (e) \(\lim_{x \to 1} \frac{x^2 + x - 2}{x + 7} = \)

 (f) \(\lim_{x \to -3} \frac{4 - \sqrt{x^2 + 7}}{x - 3} = \)

 (g) \(\lim_{x \to -3} \frac{|x - 3|}{x - 3} = \)

2. Use the Intermediate Value Theorem to show that there is a root of the equation

\[x^5 + 2x^2 - x + 2 = \sqrt{x^2 + 8} \]

on the interval (0, 1). Be specific.

3. Determine if the following functions are continuous or discontinuous at the given point \(a \). If it is discontinuous at \(a \), state which condition fails.

 (a) \(f(x) = \begin{cases} 7x - 5 & \text{if } x \geq 3 \\ 2x & \text{if } x < 3 \end{cases} \quad a = 3 \)

 (b) \(g(x) = \begin{cases} x^3 + 2 & \text{if } x \leq -1 \\ x^2 + x + 1 & \text{if } x > -1 \end{cases} \quad a = -1 \)

 (c) \(h(x) = \frac{2x^2 + 3x - 5}{4x^2 - x - 3} \quad a = 1 \)

4. Find the equation of the tangent line to the curve \(y = 2x^2 - 3x \) at the point (3, 9).

5. Locate the discontinuities for \(f(x) = \frac{2}{1 + \cos x} \)

6. Given a graph of \(f \), be able to find limits, function values, points at which \(f \) is discontinuous, points at which \(f \) is continuous from the left or from the right.
1. (a) \(-\frac{1}{4}\)

(b) \(-8\)

(c) \(4\)

(d) \(\frac{7}{8}\)

(e) \(0\)

(f) \(-\frac{3}{4}\)

(g) \(-1\)

2. Let \(f(x) = x^5 + 2x^2 - x + 2 - \sqrt{x^2 + 8}\). Now, \(f\) is continuous on \([0, 1]\) and \(f(0) = 2 - \sqrt{8} < 0\) whereas \(f(1) = 1 > 0\). Therefore, by the Intermediate Value Theorem, there is a root \(c \in (0, 1)\) such that \(f(c) = 0\).

3. (a) \(f\) is discontinuous at \(x = 3\) since the \(\lim_{x \to 3} f(x) = \text{dne}\).

(b) \(g\) is continuous at \(x = -1\).

(c) \(h\) is discontinuous at \(x = 1\) since \(h\) is not defined at \(x = 1\).

4. \(y = 9x - 18\)

5. \(f\) is discontinuous whenever \(1 + \cos x = 0\). Therefore, \(f\) is discontinuous at \(x = \pi + 2k\pi\) where \(k\) is any integer.

6. See instructor for details.