1. Evaluate the limit, if it exists.
(a) $\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{2 x^{2}+x-10}=$
(b) $\lim _{x \rightarrow 2} \frac{3 x+2}{\sqrt{3-x}+1}=$
(c) $\lim _{x \rightarrow 2} \frac{5-\sqrt{8 x+9}}{x-2}=$
(d) $\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}=$
(e) $\lim _{x \rightarrow 1} \frac{16-(x-5)^{2}}{x-1}=$
2. Use the Intermediate Value Theorem to show that there is a root of the equation

$$
\sqrt{3 x+2}+x^{3}=3 x+7
$$

Be specific.
3. Determine if the following functions are continuous or discontinuous at the given point a. If it is discontinuous at a, state which condition fails.
(a) $f(x)=\left\{\begin{array}{ll}\frac{x+1}{x-2} & \text { if } x \geq 3 \\ x^{2}-2 & \text { if } x<3\end{array} \quad a=3\right.$
(b) $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x+2} & \text { if } x \neq-2 \\ 4 & \text { if } x=-2\end{array} \quad a=-2\right.$
4. Locate the discontinuities for

$$
f(x)=\frac{3}{\sqrt{3}+2 \cos 2 x}
$$

5. Let $f(x)=2-6 x-3 x^{2}$.
(a) Find $f^{\prime}(x)$ using the definition of the derivative.
(b) Find the slope of the tangent line to f at $x=1$.
(c) Find the equation of the tangent line in part (b).
6. Consider the function $f(x)= \begin{cases}\sin x & \text { if } x \leq \frac{3 \pi}{4} \\ \cos x & \text { if } x>\frac{3 \pi}{4}\end{cases}$

Find
(a) $\lim _{x \rightarrow \frac{3 \pi}{4}+} f(x)=$
(b) $\lim _{x \rightarrow \frac{3 \pi^{-}}{4}} f(x)=$
(c) $\lim _{x \rightarrow \frac{3 \pi}{4}} f(x)=$
7. The graph of f is given below. Find

(a) $f(0)=$
(b) $f^{\prime}(-3)=$
(c) $f^{\prime}\left(\frac{3}{2}\right)=$
(d) $\lim _{x \rightarrow-1} f(x)=$
(e) $\lim _{x \rightarrow 2} f(x)=$
(f) determine the value(s) of x for which f is discontinuous.
(g) For each of the value(s) in (g), determine if f is continuous from the left or continuous from the right.
(h) determine the value(s) of x for which f is not differentiable.
(i) determine the value(s) of x for which $f^{\prime}(x)=0$
8. Given the graph of f sketch the graph of f^{\prime}

ANSWERS

1. (a) $\frac{7}{9}$
(b) 4
(c) $-\frac{4}{5}$
(d) $-\infty$
(e) 8
2. f is continuous on its domain of $[-2 / 3, \infty) ; f(0)=\sqrt{2}-7<0$ and $f(3)=\sqrt{11}+27-9-7>0$. Therefore, by IVT, there is a constant $c \in(0,3)$ such that $f(c)=0$
3. (a) f discontinuous at $x=3$ since $\lim _{x \rightarrow 3} f(x)=$ dne
(b) f discontinuous at $x=-2$ since $g(-2) \neq \lim _{x \rightarrow-2} g(x)$
4. $x=\frac{5 \pi}{12}+n \pi \quad x=\frac{7 \pi}{12}+n \pi$ where n is any integer
5. (a) $-6-6 x$
(b) $m=-12$
(c) $y=-12 x+5$
6. (a) $-\frac{\sqrt{2}}{2}$
(b) $\frac{\sqrt{2}}{2}$
(c) dne
7. (a) -2
(b) $-\frac{3}{2}$
(c) -3
(d) ∞
(e) dne
(f) $-1,0,2$
(g) 2 is continuous from the left
(h) $x=-4,-2,-1,0,1,2,4$
(i) $x=5$
8. see instructor
