1. Evaluate the limit, if it exists.

(a)
$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 + x - 10} =$$

(b)
$$\lim_{x \to 2} \frac{3x + 2}{\sqrt{3 - x} + 1} =$$

(c)
$$\lim_{x \to 2} \frac{5 - \sqrt{8x + 9}}{x - 2} =$$

(d)
$$\lim_{x \to 3^-} \frac{2x}{x - 3} =$$

(e)
$$\lim_{x \to 1} \frac{16 - (x - 5)^2}{x - 1} =$$

x - 1

2. Use the Intermediate Value Theorem to show that there is a root of the equation

$$\sqrt{3x+2} + x^3 = 3x + 7$$

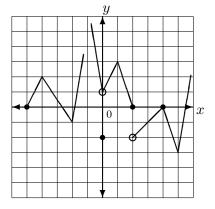
Be specific.

3. Determine if the following functions are continuous or discontinuous at the given point a. If it is discontinuous at a, state which condition fails.

(a)
$$f(x) = \begin{cases} \frac{x+1}{x-2} & \text{if } x \ge 3\\ x^2 - 2 & \text{if } x < 3 \end{cases}$$

(b) $g(x) = \begin{cases} \frac{x^2 - 4}{x+2} & \text{if } x \ne -2\\ 4 & \text{if } x = -2 \end{cases}$ $a = -2$

4. Locate the discontinuities for


$$f(x) = \frac{3}{\sqrt{3} + 2\cos 2x}$$

- 5. Let $f(x) = 2 6x 3x^2$.
 - (a) Find f'(x) using the definition of the derivative.
 - (b) Find the slope of the tangent line to f at x = 1.
 - (c) Find the equation of the tangent line in part (b).

6. Consider the function $f(x) = \begin{cases} \sin x & \text{if } x \leq \frac{3\pi}{4} \\ \cos x & \text{if } x > \frac{3\pi}{4} \end{cases}$ Find

(a)
$$\lim_{x \to \frac{3\pi}{4}^+} f(x) =$$

(b)
$$\lim_{x \to \frac{3\pi}{4}^-} f(x) =$$

(c)
$$\lim_{x \to \frac{3\pi}{4}} f(x) =$$

7. The graph of f is given below. Find

- (a) f(0) =
- (b) f'(-3) =
- (c) $f'(\frac{3}{2}) =$
- (d) $\lim_{x \to -1} f(x) =$
- (e) $\lim_{x \to 2} f(x) =$
- (f) determine the value(s) of x for which fis discontinuous.
- (g) For each of the value(s) in (g), determine if f is continuous from the left or continuous from the right.
- (h) determine the value(s) of x for which fis not differentiable.
- (i) determine the value(s) of x for which f'(x) = 0
- 8. Given the graph of f sketch the graph of f'

ANSWERS

- 1. (a) $\frac{7}{9}$
 - (b) 4
 - (c) $-\frac{4}{5}$
 - (d) $-\infty$
 - (e) 8
- 2. f is continuous on its domain of $[-2/3, \infty)$; $f(0) = \sqrt{2} 7 < 0$ and $f(3) = \sqrt{11} + 27 9 7 > 0$. Therefore, by IVT, there is a constant $c \in (0, 3)$ such that f(c) = 0
- 3. (a) f discontinuous at x = 3 since $\lim_{x \to 3} f(x) = dne$
 - (b) f discontinuous at x = -2 since $g(-2) \neq \lim_{x \to -2} g(x)$
- 4. $x = \frac{5\pi}{12} + n\pi$ $x = \frac{7\pi}{12} + n\pi$ where *n* is any integer
- 5. (a) -6 6x
 - (b) m = -12
 - (c) y = -12x + 5
- 6. (a) $-\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{2}}{2}$
 - (c) dne
- 7. (a) -2
 - (b) $-\frac{3}{2}$
 - (c) -3
 - (d) ∞
 - (e) dne
 - (f) -1, 0, 2
 - (g) 2 is continuous from the left
 - (h) x = -4, -2, -1, 0, 1, 2, 4
 - (i) x = 5

8. see instructor