1. Evaluate the following limits. (For infinite limits, determine if the answer is ∞ or $-\infty$.) Show all work. (NO SHORTCUTS!!!)
(a) $\lim _{x \rightarrow-\infty}\left(x^{3}-x^{5}\right)=$
(b) $\lim _{x \rightarrow \infty} \frac{7 x^{4}-5 x^{2}+3}{3 x^{4}-5 x^{3}+6 x}=$
(c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{8 x^{2}+7 x}}{3-4 x}=$
2. Find the critical values for $f(x)=4 x^{5 / 2}+$ $2 x^{3 / 2}-6 x^{1 / 2}$
3. Determine the local maximum(s) and local minimum(s) for $f(x)=3 x^{2 / 3}-x$.
4. Find the absolute maximum and absolute minimum of $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$ on the interval $[-1,4]$.
5. Find the interval(s) on which $f(x)=2 \cos x+$ $\sin 2 x, 0 \leq x \leq 2 \pi$, is increasing and where f is decreasing.
6. Determine the intervals where $f(x)=4 \cos x-$ x^{2} is concave up and where f is concave down.
7. An appliance firm is marketing a new refrigerator. It determines that in order to sell x refrigerators, the price per refrigerator must be $p(x)=280-0.4 x$. It also determines that the total cost of producing x refrigerators is given by $C(x)=5000+0.6 x^{2}$. How many refrigerators must the company sell in order to maximize profit?
8. A rectangular storage container with an open top is to have a volume of 10 cubic meters. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container. (Round answer to two decimal places.)
9. Sketch the graph of the function f that satisfies the given conditions:

$$
\begin{aligned}
& f(1)=f^{\prime}(2)=0 \quad \lim _{x \rightarrow 0} f(x)=\infty \\
& \lim _{x \rightarrow-\infty} f(x)=3 \quad \lim _{x \rightarrow \infty} f(x)=3 \\
& f^{\prime}(x)>0 \text { for } 0<x<2 \\
& f^{\prime}(x)<0 \text { for } x<0 \text { and } x>2 \\
& f^{\prime \prime}(x)<0 \text { for } x<0 \text { and } 0<x<3 \\
& f^{\prime \prime}(x)>0 \text { for } x>3
\end{aligned}
$$

10. Given the graph of the derivative, f^{\prime}, answer the following questions about the function f.
(a) Determine the x values for which f has a horizontal tangent.
(b) Determine the interval(s) where f is increasing.
(c) Find the x values of all local maxima of f.
(d) Determine the interval(s) where f is concave up.
(e) Find the x values of any point(s) of inflection of f.
11. Let $f(x)=\frac{x^{2}+x+1}{(x+1)^{2}}$, so that
$f^{\prime}(x)=\frac{x-1}{(x+1)^{3}} \quad$ and $\quad f^{\prime \prime}(x)=\frac{2(2-x)}{(x+1)^{4}}$.
(a) Find the domain
(b) Calculate the y-intercept of f.
(c) Calculate the horizontal asymptote(s), if it exists.
(d) Calculate the vertical asymptote(s), if it exists.
(e) Determine where f is increasing and where f is decreasing. Label answers.
(f) Find all local extrema of f.
(g) Determine where f is concave up and where f is concave down.
(h) Find all points of inflection.
(i) Sketch the graph of f on the blank sheet provided, clearly indicating all of the information obtained above.

ANSWERS

1. (a) ∞
(b) $\frac{7}{3}$
(c) $\frac{\sqrt{2}}{2}$
2. $x=0, \quad x=\frac{-3 \pm \sqrt{129}}{20}$
3. local $\min =(0,0), \quad$ local $\max =(8,4)$
4. abs $\max =37$, abs $\min =-27$
5. increasing: $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
decreasing: $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
6. concave down: $\left(0, \frac{2 \pi}{3}\right) \cup\left(\frac{4 \pi}{3}, 2 \pi\right)$
concave up: $\left(\frac{2 \pi}{3}, \frac{4 \pi}{3}\right)$
7. $x=140$
8. cost $=\$ 163.54$
9. see instructor
10. see instructor
11. (a) $x \neq-1$
(b) $(0,1)$
(c) $y=1$
(d) $x=-1$
(e) increasing: $(-\infty,-1) \cup(1, \infty)$; decreasing: $(-1,1)$
(f) local min $=(1,3 / 4)$
(g) concave up: $(-\infty,-1) \cup(-1,2)$; concave down: $(2, \infty)$
(h) $\left(2, \frac{7}{9}\right)$
(i) see instructor
