- A function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$. Note that in order for a function f to be continuous at a, three things must happen:

1. $f(a)$ must be defined.
2. $\lim _{x \rightarrow a} f(x)$ must exist.
3. These two things must be the same; namely, $\lim _{x \rightarrow a} f(x)=f(a)$.

- A function f is discontinuous at a number a if f is not continuous at a.
- Intuitively, f is discontinuous at a if there is a hole, break, or jump in the graph at $x=a$.
- A function f is continuous from the right at a number a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
- A function f is continuous from the left at a number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

Example 1: Determine if the following functions are continuous or discontinuous at the given point a. If it is discontinuous at a, state which condition fails.

- $f(x)=\left\{\begin{array}{ll}x-2 & \text { if } x \leq 3 \\ 5 x+1 & \text { if } x>3\end{array} \quad a=3\right.$
$g(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{array} \quad a=2\right.$
- $h(x)=\left\{\begin{array}{ll}3 x-2 & \text { if } x<-1 \\ 4 x^{2}+9 x & \text { if } x \geq-1\end{array} \quad a=-1\right.$
- A function f is continuous on an interval if it is continuous at every number in the interval. If f is defined only on one side of an endpoint, we understand that continuous at that endpoint to mean continuous from the right or continuous from the left.
- If f and g are continuous at a and c is a constant, then the following functions are also continuous at a :

$$
f+g \quad f-g \quad c f \quad f g \quad \text { and } \quad \frac{f}{g} \quad \text { if } g(a) \neq 0
$$

- If g is continuous at a and f is continuous at $g(a)$, then $f \circ g(x)=f(g(x))$ is continuous at a.
- Any polynomial is continuous everywhere.
- Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.
- The following functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions.
- If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f(b)$. In other words,

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Example 2: Determine the intervals where the following functions are continuous.

1. $f(x)=x^{2}+x+1$
2. $g(x)=\frac{2 x+1}{x^{2}+5 x+6}$
3. $h(x)=\sqrt{x}+\frac{x}{x-7}$
4. $f(x)=\tan 3 x$
5. $g(x)=\frac{1}{\sqrt{x^{2}+5}-3}$
6. $h(x)=\sin x^{4}+\cos (9 x-5)$

Example 3: Locate all the discontinuities for

$$
f(x)=\frac{9}{\sqrt{3}+2 \sin 3 x}
$$

Intermediate Value Theorem: Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

Example 4: Use the Intermediate Value Theorem to show that there is a root of $\tan x=2 x$ in the interval $(0,1.4)$.

Homework: pp 54-55; \#3, 5, 9, 13-31 odd, 37, 39 (You do not need to sketch any graphs.)

