Curve Sketching Guidelines

Section 3.4

1. DOMAIN: Find all values of x for which $f(x)$ is defined.

2. INTERCEPTS:

(a) x -intercepts: let $y=0$, and solve for x
(b) y -intercepts: let $x=0$, and solve for y

3. SYMMETRY:

(a) y-axis: if $f(-x)=f(x)$
(b) origin: if $f(-x)=-f(x)$

4. ASYMPTOTES:

(a) Vertical asymptotes: Find the values of a for which $\lim _{x \rightarrow a} f(x)=\infty$ or $\lim _{x \rightarrow a} f(x)=-\infty$ (NOTE: for a rational function, find where the denominator is equal to zero.)
(b) Horizontal asymptotes: If $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ then $y=L$ is a horizontal asymptote.

5. INCREASING/DECREASING:

(a) Increasing when $f^{\prime}(x)>0$.
(b) Decreasing when $f^{\prime}(x)<0$.

6. LOCAL MAX/MIN:

(a) Local Max: $f(c)$ is a local max if $f^{\prime}(x)$ changes from + to - at c.
(b) Local Min: $f(c)$ is a local max if $f^{\prime}(x)$ changes from - to + at c.

7. CONCAVITY:

(a) Concave up when $f^{\prime \prime}(x)>0$
(b) Concave down when $f^{\prime \prime}(x)<0$
8. POINTS OF INFLECTION: P is point of inflection if the concavity of f changes at P. (NOTE: to be a point of inflection P must be in the domain of f.)
9. SKETCH GRAPH

