- The derivative of a function f at a number a, denoted by $f^{\prime}(a)$ is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if this limit exists.

- Other notations for the derivative

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

and

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}
$$

- A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) (or $(a, \infty),(-\infty, a)$, or $(-\infty, \infty)$) if it is differentiable at every number in the interval.
- Theorem: If f is differentiable at a, then f is continuous at a.
- The converse of the above theorem is NOT true.
- A function f is not differentiable at $x=a$ if

1. the graph of the function f has a corner, kink, or sharp point at $x=a$.
2. the function f is not continuous at $x=a$.
3. the function f has a vertical tangent line at $x=a$
