- Let f be a function defined on both sides of a, except possibly at a. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

- The line $x=a$ is called a vertical asymptote of $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

Example 1: Find the limit.

1. $\lim _{x \rightarrow 5^{+}} \frac{6}{x-5}$
2. $\lim _{x \rightarrow \pi^{-}} \cot \pi$

- Let f be a function defined on some interval (a, ∞). Then $\lim _{x \rightarrow \infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.
- Let f be a function defined on some interval $(-\infty, a)$. Then $\lim _{x \rightarrow-\infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large negative.
- The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

STEPS TO EVALUATE THE LIMIT AT INFINITY OF RATIONAL FUNCTIONS.

1. Divide both the numerator and denominator by the highest power of x that occurs in the denominator. (Note that since we are only interested in large values of x, we can assume that $x \neq 0$.)
2. Next, use the following property: If n is a positive number, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0
$$

3. Evaluate the limit.

Examples: Find the limit.

1. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2}{7 x^{2}+x-1}$
2. $\lim _{x \rightarrow-\infty} \frac{\sqrt{8 x^{4}-1}}{x^{2}+1}$
3. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{4}+6 x^{2}}-x^{2}\right)$
4. $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)$
5. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$
6. $\lim _{x \rightarrow-\infty} \cos x$
7. $\lim _{x \rightarrow-\infty}\left(x^{2}-x^{4}\right)$
8. $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{5-2 x^{2}}$

Homework: pp 66-67; \#1, 2, 3-7 odd, 13-31 odd

