- The function f has limit L as x approaches a, denoted

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that we can make $f(x)$ as close to L as we like by making x sufficiently close to a, but not equal to a.

- The function f has a right-hand limit L as x approaches a, denoted

$$
\lim _{x \rightarrow a^{+}} f(x)=L,
$$

means we can make $f(x)$ as close to L as we like by taking x sufficiently close, but not equal, to a and x to the right of a.

- The function f has a left-hand limit L as x approaches a, denoted

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

means we can make $f(x)$ as close to L as we like by taking x sufficiently close, but not equal, to a and x to the left of a.

- $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$
- Let f be a function defined on both sides of a, except possibly at a. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

- The line $x=a$ is called a vertical asymptote of $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

