- A function f has an absolute maximum at $x=c$ if $f(c) \geq f(x)$ for all x in the domain of f. The number $f(c)$ is the absolute maximum.
- A function f has an absolute minimum at $x=c$ if $f(c) \leq f(x)$ for all x in the domain of f. The number $f(c)$ is the absolute minimum.
- A function f has a local maximum at $x=c$ if there exists an open interval I containing c such that $f(c) \geq f(x)$ for all $x \in I$.
- A function f has a local minimum at $x=c$ if there exists an open interval I containing c such that $f(c) \leq f(x)$ for all $x \in I$.

Example 1. Identify the absolute maximum, absolute minimum, local maximum(s), and local minimum(s) for the following function f, if they exist.

- Fermat's Theorem: If f has a local maximum or a local minimum at $x=c$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
- NOTE: the converse of Fermat's Theorem is NOT true.
- A critical number, or critical point, of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
- If f has a local maximum or local minimum at c, then c is a critical point of f.

Example 2. Find the critical points of the following functions.
(a) $f(x)=x^{3}+x^{2}-x$
(b) $g(x)=x^{3 / 5}(4-x)$
(c) $h(\theta)=4 \theta-\tan \theta$

Extreme Value Theorem: If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum $f(c)$ and absolute minimum $f(d)$ at some numbers c and d in $[a, b]$.

NOTE: The Extreme Value Theorem does not hold if the function is discontinuous on $[a, b]$ or if the interval is not closed.

How to find ABSOLUTE extrema of a function on a closed interval $[a, b]$.
STEP I: Find the critical number(s) of the function (say $x=c$) that are in the interval (a, b).
STEP II: Evaluate the function at the critical number(s). That is, calculate $f(c)$.
STEP III: Evaluate the function at each endpoint of $[a, b]$. That is, calculate $f(a)$ and $f(b)$.
STEP IV: The absolute maximum is the largest of the function values $f(c), f(a)$, and $f(b)$.
STEP V: The absolute minimum is the smallest of the function values $f(c), f(a)$, and $f(b)$.

Example 3. Find the absolute extrema of $f(x)=3 x^{4}-4 x^{3}$ on the interval $[-1,2]$.
STEP I: $f^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)$. So, the critical numbers are

$$
12 x^{2}(x-1)=0 \quad \Longrightarrow \quad x=0 \text { or } x=1
$$

each of which lies in the interval $(-1,2)$.
STEP II: Evaluate the function at these critical numbers:
$f(0)=3(0)^{4}-4(0)^{3}=0$,
$f(1)=3(1)^{4}-4(1)^{5}=-1$.
STEP III: Evaluate the function at the endpoints of the interval $[-1,2]$:
$f(-1)=3(-1)^{4}-4(-1)^{3}=7$,
$f(2)=3(2)^{4}-4(2)^{3}=16$.
STEP IV: The largest function value is $f(2)=16$. Hence $x=2, f(2)=16$ is the absolute maximum of f on the interval $[-1,2]$.

STEP V: The smallest function value is $f(1)=-1$. Hence $x=1, f(1)=-1$ is the absolute minimum of f on the interval $[-1,2]$.

