Newton's Method is a generalized process to find an accurate root of a system (or a single) equations $f(x)=0$.

Let f be a differentiable function. Choose a point x_{1} near a root of f. Define recursively

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If the point x_{1} is chosen sufficiently close to the root then the x_{n} 's are successively better approximations of the root.

Example: Find the root of $x^{4}+x-4=0$ in the interval [1,2] accurate to 6 decimal places.
Solution: Note that the root will be accurate to 6 decimal places when x_{n} and x_{n+1} agree to 6 decimal places.
For this problem $f(x)=x^{4}+x-4$ and therefore, $f^{\prime}(x)=4 x^{3}+1$. Choose $x_{1}=1.5$. The iterative process is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{4}+x_{n}-4}{4 x_{n}^{3}+1} .
$$

Beginning the iterative process, we have $x_{1}=1.5$ and

$$
\begin{gathered}
x_{2}=1.5-\frac{1.5^{4}+1.5-4}{4(1.5)^{3}+1} \\
=1.323275862
\end{gathered}
$$

Next, we have

$$
\begin{gathered}
x_{3}=1.323275862-\frac{(1.323275862)^{4}+1.323275862-4}{4(1.323275862)^{3}+1} \\
=1.285346065 \\
x_{4}=1.285346065-\frac{(1.285346065)^{4}+1.285346065-4}{4(1.285346065)^{3}+1} \\
=1.283784219
\end{gathered}
$$

$$
x_{5}=1.283784219-\frac{(1.283784219)^{4}+1.283784219-4}{4(1.283784219)^{3}+1}
$$

$$
=1.283781666
$$

$$
\begin{aligned}
x_{6}=1.283781666- & \frac{(1.283781666)^{4}+1.283781666-4}{4(1.283781666)^{3}+1} \\
& =1283781666
\end{aligned}
$$

$$
=1.283781666
$$

Now, x_{5} and x_{6} agree to 6 decimal places, so the root accurate to 6 decimal places is 1.283781.

