Definition: If f is continuous function defined for $a \leq x \leq b$, we divide $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$ be the endpoints of these subintervals. Next, we choose sample points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ in these subintervals, so x_{i}^{*} lies in the i-th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Remarks:

1. \int is called the integral, and $f(x)$ is called the integrand. a is called the lower limit of integration and b is the upper limit of integration. $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ is called the Riemann Sum.
2. $\int_{a}^{b} f(x) d x$ is a number.
3. Because f is continuous, it can be proven that the limit in the definition exists and always gives the same value no matter how we choose the sample points x_{i}^{*}.
4. If f is positive, then $\int_{a}^{b} f(x) d x$ is the area under the curve.
5. If f has both positive and negative values, then

$$
\int_{a}^{b} f(x) d x=\text { (area above } \mathrm{x} \text {-axis) }- \text { (area below } \mathrm{x} \text {-axis). }
$$

