Math 12002

The Definite Integral

Section 4.2

<u>Definition</u>: If f is continuous function defined for $a \le x \le b$, we divide [a, b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$. We let $x_0 = a, x_1, x_2, \ldots, x_n = b$ be the endpoints of these subintervals. Next, we choose sample points $x_1^*, x_2^*, \ldots, x_n^*$ in these subintervals, so x_i^* lies in the *i*-th subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Remarks:

1. \int is called the integral, and f(x) is called the integrand. *a* is called the lower limit of integration and *b* is the upper limit of integration. $\sum_{i=1}^{n} f(x_i^*) \Delta x$ is called the **Riemann Sum**.

2.
$$\int_{a}^{b} f(x) dx$$
 is a number.

- 3. Because f is continuous, it can be proven that the limit in the definition exists and always gives the same value no matter how we choose the sample points x_i^* .
- 4. If f is positive, then $\int_{a}^{b} f(x) dx$ is the area under the curve.
- 5. If f has both positive and negative values, then

$$\int_{a}^{b} f(x) \, dx = (\text{area above x-axis}) - (\text{area below x-axis})$$