\qquad

1. (1 pt each) Answer each question as "True" or "False". If "True" give a brief justification. If "False" provide a counter-example.
(a) Convergent sequences are bounded.
(b) Convergent sequences are monotonic.
(c) If $\sum a_{n}$ is divergent, then $\left\{a_{n}\right\}$ is not a null sequence.
(d) If $\left\{\left|a_{n}\right|\right\}$ is convergent, then so is $\left\{a_{n}\right\}$.
(e) An infinite series is a sequence.
(f) If $\sum a_{n}$ is divergent, then $\sum a_{n}^{2}$ is divergent.
(g) If $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$ exists, then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ both exist.
2. (2 pts each) Find the sum of the following series.
(a) $\sum_{n=1}^{\infty} \frac{2^{3 n+1}}{10^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{3^{2 n-1}}{5^{3 n+1}}$
(c) $\sum_{n=2}^{\infty} \frac{6}{n^{2}+6 n}$
(HINT: Use partial fraction decomposition.)
3. (2 pts each) Determine if each of the following series converges or diverges. Show all work and state the test you are using.
(a) $\sum_{n=1}^{\infty} \frac{1+2^{n}}{1+3^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{2 n+5}{(n+1)^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n}{n^{4}+1}$
