Four Step Strategy

1. Simplify the integrand if possible: Use algebraic manipulation or trigonometric identities to simplify the integrand and make the method of integration clear.
2. Look for a substitution: Try to find some function $u=f(x)$ in the integrand whose differential $d u=f^{\prime}(x) d x$ also occurs, apart from a constant factor.

3. Classify the integrand according to its form:

- Trigonometric functions: If f is a product of powers of sine and cosine, of tangent and secant, or of cotangent and cosecant, then we use the substitutions recommended in Section 8.2.
- Rational functions: If f is a rational function, we use partial fraction decomposition.
- Integration by parts: If f is a product of a power of x (or a polynomial) and a transcendental function (trigonometric, exponential, logarithmic), then we try integration by parts choosing u and $d v$ appropriately. Remember that it also works on integrands of other forms as well.
- Radicals: When radicals of a specific type appear, we use trigonometric substitutions.
- If $\sqrt{x^{2}-a^{2}}$ occurs, use $x=a \sec \theta$.
- If $\sqrt{a^{2}-x^{2}}$ occurs, use $x=a \sin \theta$.
- If $\sqrt{x^{2}+a^{2}}$ occurs, use $x=a \tan \theta$.
- If $\sqrt[n]{a x+b}$ occurs (or more generally $\sqrt[n]{f(x)}$), use the rationalizing substitution $u=\sqrt[n]{a x+b}$ (or more generally $u=\sqrt[n]{f(x)}$).

4. Try again: Use some ingenuity to rewrite and/or manipulate the integrand. Remember that occasionally you will need to use several methods.
