MATH 12003 CALCULUS AND PARAMETRIC EQUATIONS Section 11.2

- TANGENTS

Parametric Form of the Derivative: If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}, \quad \text { provided } \frac{d x}{d t} \neq 0
$$

Occasionally we need to find the second derivative $\frac{d^{2} y}{d x^{2}}$. This is given by

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

QUESTION 1: When does the curve have a horizontal tangent?

QUESTION 2: When does the curve have a vertical tangent?

EXAMPLE 1: For the curve given by $x=\sqrt{t}$ and $y=\frac{1}{4}\left(t^{2}-4\right)$ where $t \geq 0$, find the slope of the tangent line at $(2,3)$.

EXAMPLE 2: Find an equation of the tangent to the curve defined by $x=\cos \theta+\sin 2 \theta$ and $y=\sin \theta+\cos 2 \theta$ at the point corresponding to $\theta=0$.

EXAMPLE 3: Given $x=t^{3}-12 t$ and $y=t^{2}-1$ find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. For which values of t is the curve concave upward?

EXAMPLE 4: Find the points on the curve $x=\cos 3 \theta, y=2 \sin \theta$ where the tangent line is horizontal or vertical.

Homework: pp 702-703; \#1-19 odd, 25, 29

- ARC LENGTH

Arc length of C : If a curve C is described by the parametric equations $x=f(t)$, $y=g(t), \quad \alpha \leq t \leq \beta$, where f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

example 1: Find the length of the curve $x=3(\cos t+t \sin t), y=3(\sin t-t \cos t)$, $0 \leq t \leq \pi$.

EXAMPLE 2: Find the length of the curve $x=e^{t}+e^{-t}, \quad y=5-2 t, \quad 0 \leq t \leq 3$.

- AREA OF A SURFACE

Area of a Surface of Revolution: If a smooth curve C given by $x=f(t)$ and $y=g(t)$ does not cross itself on an interval $a \leq t \leq b$, then the area S of a surface of revolution formed by revolving C about the coordinate axes is given by the following:

$$
\begin{array}{ll}
S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t & \text { Revolution about the } x-\operatorname{axis:} g(t) \geq 0 \\
S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t & \text { Revolution about the } y \text {-axis: } f(t) \geq 0
\end{array}
$$

EXAMPLE 1: Find the area of the surface obtained by rotating the curve given by $x=3 t-t^{3}, y=3 t^{2}, \quad 0 \leq t \leq 1$ about the x-axis.

EXAMPLE 2: Find the surface area generated by rotating the curve given by $x=e^{t}-t$, $y=4 e^{t / 2}, \quad 0 \leq t \leq 1$ about the y-axis.

