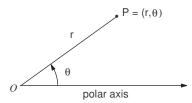
Below is the **polar coordinate system**:



- If P is any point in the plane, let r be the distance from O to P and let θ be the angle between the polar axis and the line OP. Then the point P is represented by the ordered pair (r, θ) and r, θ are called the **polar coordinates** of P.
- θ is positive if measured in the counter clockwise direction and negative if measured in the clockwise direction.
- The points $(-r, \theta)$ and (r, θ) lie on the same line through O and at the same distance |r| from O, but on the opposite sides of O. Thus, $(-r, \theta)$ represents the same point as $(r, \theta+\pi)$.
- The points in the plane do not have a unique polar representation. The point (r, θ) can also be represented by

 $(r, \theta + 2n\pi)$ or $(-r, \theta + (2n+1)\pi)$

• If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ) , then we have

$$x = r \cos \theta$$
 and $y = r \sin \theta$.

This allows us to find the Cartesian coordinates of a point when the polar coordinates are known.

• To find r and θ when x and y are known, we use the equations

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \frac{y}{x}$.

CAUTION: choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE: Plot the following points.

(a)
$$\left(1,\frac{\pi}{3}\right)$$
 (b) $\left(3,\frac{3\pi}{4}\right)$

(c)
$$\left(2, -\frac{\pi}{6}\right)$$
 (d) $\left(-2, \frac{\pi}{4}\right)$

(e)
$$\left(-1, -\frac{2\pi}{3}\right)$$

EXAMPLE 2: Find the Cartesian coordinates of the following:

(a)
$$\left(2, \frac{2\pi}{3}\right)$$
 (b) $\left(-3, \frac{\pi}{6}\right)$

EXAMPLE 3: Find the polar coordinates of the following:

(a)
$$(1,1)$$
 (b) $(-\sqrt{3},1)$

Homework: pp 713–714; #1–5 odd, #15–25 odd

Graphing Polar Equations

The graph of a polar equation $r = f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

EXAMPLE 1: Graph the following: (a) r = 3 (b) $r = 2\sin\theta$

(c)
$$\theta = \frac{\pi}{r}$$
 (d) $r = 2 + 2\sin\theta$

(e)
$$r = \cos 2\theta$$
 (f) $r = 1 + 2\cos\theta$

Homework: pg 714; #29–45 every other odd (eoo)

Tangents to Polar Curves

To find a tangent line to a polar curve $r = f(\theta)$ we regard θ as a parameter and write its parametric equations as

 $x = r \cos \theta = f(\theta) \cos \theta$ and $y = r \sin \theta = f(\theta) \sin \theta$.

Using the above equations, we have

$$\frac{dy}{dx} = -\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Therefore, we can make the following observations:

- Solutions to $\frac{dy}{d\theta} = 0$ yield horizontal tangents, provided that $\frac{dx}{d\theta} \neq 0$.
- Solutions to $\frac{dx}{d\theta} = 0$ yield vertical tangents, provided that $\frac{dy}{d\theta} \neq 0$.
- When both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are zero, we need to use a limit to determine what happens at that value of θ .

EXAMPLE 1: Find the points (in polar form) on the curve $r = 2(1 - \cos \theta)$ that have vertical or horizontal tangents.