PARABOLAS

A parabola is the set of points in a plane that are equidistant from a fixed point F, called the focus, and a fixed line, called the directrix.

Equation of a parabola:

An equation of the parabola with focus $(0, p)$ and directrix $y=-p$ is

$$
\begin{equation*}
y=\frac{1}{4 p} x^{2} \tag{1}
\end{equation*}
$$

NOTE: The parabola opens up if $p>0$ and down if $p<0$.

An equation of the parabola with focus $(p, 0)$ and directrix $x=-p$ is

$$
\begin{equation*}
x=\frac{1}{4 p} y^{2} \tag{2}
\end{equation*}
$$

NOTE: The parabola opens to the right if $p>0$ and to the left if $p<0$.

- A parabola with equation of either form (1) or (2) is said to be in standard position.
- The point halfway between the focus and the directrix is the vertex of the parabola.
- The line through the focus that is perpendicular to the directrix is the axis of symmetry of the parabola.

ELLIPSES

An ellipse is the set of points in the plane the sum of whose distances from two fixed points F_{1} and F_{2} is a constant. F_{1} and F_{2} are called the foci.

Equation of an ellipse:

The ellipse of the form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a \geq b>0 \tag{3}
\end{equation*}
$$

has foci $(\pm c, 0)$, where $c^{2}=a^{2}-b^{2}$, and vertices $(\pm a, 0)$.

The ellipse of the form

$$
\begin{equation*}
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, \quad a \geq b>0 \tag{4}
\end{equation*}
$$

has foci $(0, \pm c)$, where $c^{2}=a^{2}-b^{2}$, and vertices $(0, \pm a)$.

NOTE: The line segment connecting the vertices is called the major axis.

HYPERBOLAS

A hyperbola is the set of all points in a plane the difference of whose distances from two fixed points F_{1} and F_{2} is a constant. F_{1} and F_{2} are called the foci.

Equation of a hyperbola:

The hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{5}
\end{equation*}
$$

has foci at $(\pm c, 0)$, where $c^{2}=a^{2}+b^{2}$, vertices $(\pm a, 0)$, and asymptotes $y= \pm \frac{b}{a} x$.

The hyperbola

$$
\begin{equation*}
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \tag{6}
\end{equation*}
$$

has foci at $(0, \pm c)$, where $c^{2}=a^{2}+b^{2}$, vertices $(0, \pm a)$, and asymptotes $y= \pm \frac{a}{b} x$.

Example 1: Find vertex (or vertices), focus (or foci), and asymptotes (if applicable) for the following conic sections.

1. $9 x^{2}-4 y^{2}=36$
2. $4 x^{2}+25 y^{2}=25$
3. $y^{2}=12 x$

Example 2: Find an equation for the conic that satisfies the given conditions.

1. Parabola with focus $(3,6)$, vertex $(3,2)$
2. Ellipse with foci $(0,-1),(8,-1)$, vertex $(9,-1)$
3. Hyperbola with foci $(2,-2),(2,8)$, vertices $(2,0),(2,6)$
