Consider the following combinations:

$$
\binom{k}{n}=\frac{k!}{(k-n)!n!} \quad \text { for } n=0,1,2, \ldots, k
$$

Writing out the terms, we see that

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

If k is a positive integer and we multiply out $(a+b)^{k}$ term by term, the coefficient of $a^{k-n} b^{n}$ is given by $\binom{k}{n}$. Accordingly, we refer to $\binom{k}{n}$ as a binomial coefficient.

$$
(a+b)^{k}=\sum_{n=0}^{k}\binom{k}{n} a^{k-n} b^{k}
$$

EXAMPLE: $(x+y)^{5}=$

If we take $a=1$ and $b=x$ we have

$$
(1+x)^{k}=\sum_{n=0}^{k}\binom{k}{n} x^{n}
$$

Sir Isaac Newton extended this to the case in which k is no longer a positive integer. For this case, $(1+x)^{k}$ is no longer a finite sum, but an infinite sum.

Theorem 1 (The Binomial Theorem). If k is any real number and $|x|<1$, then

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}
$$

where $\binom{k}{n}=\frac{k!}{(k-n)!n!}$ for $n \geq 1$ and $\binom{k}{0}=1$.
examples: Use the binomial series to expand the function as a power series. State the radius of convergence.

1. $f(x)=\frac{1}{(1+x)^{4}}$
2. $g(x)=\frac{1}{\sqrt[5]{32-x}}$
