Series: Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots$, let s_{n} denote its nth partial sum:

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum a_{n}$ is called convergent and we write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. Otherwise, the series is called divergent.

Geometric Series: Each term of a geometric series is obtained from the preceding one by multiplying it by a common ratio r. Namely,

$$
a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots+a r^{n}+\cdots=\sum_{n=1}^{\infty} a r^{n-1} \quad a \neq 0
$$

The geometric series converges when $|r|<1$ and its sum is given by

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

When $|r| \geq 1$, the geometric series is divergent.

Harmonic Series: The harmonic series is given by

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots
$$

The harmonic series is a divergent series.

Theorem 1. If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem 2. Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Theorem 3. If $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ are convergent series, then so are the series $\sum c a_{n}, \sum\left(a_{n}+b_{n}\right)$, and $\sum\left(a_{n}-b_{n}\right)$ and

- $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
- $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
- $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

EXAMPLES: Determine whether the series is convergent or divergent. If it is convergent, find its sum.

1. $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}}$
2. $\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^{n}}$
3. $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n(n+2)}$
4. $\sum_{n=1}^{\infty}\left(\frac{1}{2^{n-1}}+\frac{2}{3^{n-1}}\right)$
