Comparison Test: Suppose that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are sequences of non-negative terms for which (eventually) $a_{n} \leq b_{n}$. The following statements are true:

- If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.
- If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
examples: Determine whether the series converges or diverges.

1. $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$
2. $\sum_{n=1}^{\infty} \frac{7}{3^{n}+4}$
3. $\sum_{n=1}^{\infty} \frac{n^{2}-1}{3 n^{4}+1}$
4. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
5. $\sum_{n=1}^{\infty} \frac{n-4}{n^{3}+n+1}$
6. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

Limit Comparison Test: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.

HINT: when testing many series, we can find a suitable comparison series by taking the highest powers in the denominator and numerator.

EXAMPLES: Determine whether the series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{5}{2 n+3}$
2. $\sum_{n=2}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$
3. $\sum_{n=2}^{\infty} \frac{n}{n^{3}-n^{2}-1}$
4. $\sum_{n=1}^{\infty} \frac{2 n^{2}+7 n}{3^{n}\left(n^{2}+5 n-1\right)}$
5. $\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^{7}+n^{2}}}$
