The Dot Product: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

NOTES:

- To find the dot product we multiply corresponding components together and then add.
- $\mathbf{a} \cdot \mathbf{b}$ is not a vector; it is a real number.
- The dot product is sometimes called the inner product or scalar product.
- The definition given above can be extended to any two vectors a and \mathbf{b} in V_{n}.

EXAMPLE 1: Given $\mathbf{a}=\langle 3,-2,5\rangle$ and $\mathbf{b}=\langle 4,2,-6\rangle$, find $\mathbf{a} \cdot \mathbf{b}$.

Properties of the Dot Product

1. $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4. $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
5. $\mathbf{0} \cdot \mathbf{a}=0$

Theorem 1. If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

NOTES:

- This theorem gives a geometric interpretation of the dot product in terms of the angle θ between the representations of \mathbf{a} and \mathbf{b} that begin at the origin with $0 \leq \theta \leq \pi$.
- If \mathbf{a} and \mathbf{b} are parallel, then $\theta=0$ or $\theta=\pi$.
- This theorem also allows us to find the angle between any two vectors.
- Two nonzero vectors \mathbf{a} and \mathbf{b} are perpendicular or orthogonal if the angle between them is $\theta=\frac{\pi}{2}$. Using the above theorem we have

$$
\mathbf{a} \text { and } \mathbf{b} \text { are orthogonal if and only if } \mathbf{a} \cdot \mathbf{b}=0
$$

- We can think of the dot product as measuring the extent to which \mathbf{a} and \mathbf{b} point in the same direction. The dot product is positive if \mathbf{a} and \mathbf{b} point in the same general direction, zero if they are orthogonal, and negative if they point in generally opposite directions. When \mathbf{a} and \mathbf{b} point in exactly the same direction, $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}|$. If they point in exactly opposite directions, then $\mathbf{a} \cdot \mathbf{b}=-|\mathbf{a}||\mathbf{b}|$.

EXAMPLE 2: Find the angle between the vectors $\mathbf{a}=\langle 6,-3,2\rangle$ and $\mathbf{b}=\langle 2,1,-2\rangle$.

EXAMPLE 3: Determine if $\mathbf{u}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ are orthogonal, parallel, or neither.

EXAMPLE 4: For what values of b are the vectors $\langle-6, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ orthogonal?

EXAMPLE 5: Find two unit vectors that make an angle of 60° with $\mathbf{v}=\langle 3,4\rangle$.

