The Cross Product (definition 1): If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector $\mathbf{a} \times \mathbf{b}$ given by

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

A determinant of order 2: is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

A determinant of order 3: can be defined in terms of second-order determinants as

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

The Cross Product (definition 2): The cross product of vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
$$

NOTE: The cross product is also called the vector product.
example 1: Calculate $\mathbf{a} \times \mathbf{b}$.

1. $\mathbf{a}=\langle 5,1,4\rangle$ and $\mathbf{b}=\langle-1,3,-2\rangle$
2. $\quad \mathbf{a}=\mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+e^{t} \mathbf{j}-e^{-t} \mathbf{k}$

Theorem 1. The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

NOTE: This theorem states that if \mathbf{a} and \mathbf{b} are represented by directed line segments with the same initial point, then the cross product $\mathbf{a} \times \mathbf{b}$ points in the direction perpendicular to the plane through \mathbf{a} and \mathbf{b}.

Theorem 2. If θ is the angle between \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$, then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

NOTE: The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

Corollary 1. Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if

$$
\mathbf{a} \times \mathbf{b}=0
$$

EXAMPLE 2: Find two unit vectors orthogonal to both $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+\mathbf{k}$.

EXAMPLE 3: Find a vector orthogonal to the plane through the points $P=(2,1,5)$, $Q=(-1,3,4)$, and $R=(3,0,6)$.

Properties of the Cross Product

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Scalar triple product of vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$. It is useful to note that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

NOTE: The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude (absolute value) of their scalar triple product. That is,

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|
$$

If the volume is found to be zero, then the vectors must lie in the same plane; that is, they are coplanar.

EXAMPLE 4: Find the volume of the parallelepiped determined by the vectors $\mathbf{a}=\mathbf{i}+\mathbf{j}-\mathbf{k}$, $\mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$, and $\mathbf{c}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$.

EXAMPLE 5: Determine whether the points $P=(1,0,1), Q=(2,4,6), R=(3,-1,2)$, and $S=(6,2,8)$ lie in the same plane.

