Definition: If $f$ is continuous function defined for $a \leq x \leq b$, we divide $[a, b]$ into $n$ subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$ be the endpoints of these subintervals. Next, we choose sample points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ in these subintervals, so $x_{i}^{*}$ lies in the $i$-th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of $f$ from $a$ to $b$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Now, we want to consider the volume of 3-dimensional solids. Consider the following:

If we approximate the volume of the solid by $n$ such discs of width $\Delta x$ and radius $f\left(x_{i}^{*}\right)$ gives

$$
\begin{aligned}
\text { Volume of solid } & \approx \sum_{i=1}^{n} \pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x \\
& =\pi \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x
\end{aligned}
$$

This approximation is better as $n \rightarrow \infty$. Thus,

$$
\begin{aligned}
\text { Volume of solid } & =\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x \\
& =\pi \int_{a}^{b}[f(x)]^{2} d x
\end{aligned}
$$

## The Disc Method

To find the volume of a solid of revolution with the disc method, use one of the following:

$$
\begin{array}{cc}
\text { Horizontal Axis of Revolution } \\
V=\int_{a}^{b} \pi[f(x)]^{2} d x & \frac{\text { Vertical Axis of Revolution }}{} \\
V=\int_{c}^{d} \pi[f(y)]^{2} d y
\end{array}
$$

NOTE: You can determine the variable of integration by placing a representative rectangle in the plane region perpendicular to the axis of revolution. If the width of the rectangle is $\Delta x$, integrate with respect to $x$, and if the width of the rectangle is $\Delta y$, integrate with respect to $y$.

The disc method can be extended to cover solids of revolution with holes by replacing the representative disc by a representative washer. Then the volume of each washer is given by

$$
\text { Volume of each washer } \left.=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right)\right] \cdot(\text { width }) .
$$

Therefore, volume of the resulting solid is given by

$$
V=\int_{a}^{b} \pi\left([\text { outer radius }]^{2}-[\text { inner radius }]^{2}\right) d x
$$

