Arc Length Formula for $y=f(x)$: If f^{\prime} is continuous on $[a, b]$, then the length of the curve $y=f(x), a \leq x \leq b$, is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Using our other notation for derivatives, we can rewrite the arc length formula as

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Arc Length Formula for $x=g(y)$: If g^{\prime} is continuous on $[c, d]$, then the length of the curve $x=g(y), c \leq y \leq d$, is

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Using our other notation for derivatives, we can rewrite the arc length formula as

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

examples: Find the length of the curve.

1. $y=\ln (\cos x), \quad 0 \leq x \leq \frac{\pi}{3}$
2. $y^{2}=4 x, \quad 0 \leq y \leq 2$
