Definition of the Area of a Surface of Revolution: Let $y=f(x)$ have a continuous derivative on the interval $[a, b]$. The area $S$ of the surface of revolution formed by revolving the graph of $f$ about a horizontal or vertical axis is

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad(y \text { is a function of } x)
$$

where $r(x)$ is the distance between the graph of $f$ and the axis of revolution. If $x=g(y)$ has a continuous derivative on the interval $[c, d]$, then the surface area is

$$
S=2 \pi \int_{c}^{d} r(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y \quad(x \text { is a function of } y)
$$

where $r(y)$ is the distance between the graph of $g$ and the axis of revolution.

EXAMPLES:

1. Find the area of the surface obtained by rotating $9 x=y^{2}+18, \quad 2 \leq x \leq 6$ about the $x$-axis.
2. Find the area of the surface obtained by rotating $x=1+2 y^{2}, \quad 1 \leq y \leq 2$ about the $x$-axis.
3. Find the area of the surface obtained by rotating $y=1-x^{2}, \quad 0 \leq x \leq 1$ about the $y$-axis.
