Moments and Center of Mass: One-Dimensional System: Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $x_{1}, x_{2}, \ldots, x_{n}$.

- The moment about the origin is $M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
- The center of mass is $\bar{x}=\frac{M_{0}}{m}$, where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

EXAMPLE: Find the center of mass of the linear system shown below:

Moments and Center of Mass: Two-Dimensional System: Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

- The moment about the y-axis is $M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
- The moment about the x-axis is $M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}$.
- The center of mass (\bar{x}, \bar{y}) (or center of gravity) is

$$
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

EXAMPLE: Find the center of mass of the system of point masses $m_{1}=6, m_{2}=3, m_{3}=2$, and $m_{4}=9$, located at $(3,-2),(0,0),(-5,3)$, and $(4,2)$.

A planar lamina is a thin, flat plate of material of uniform density. (For a planar lamina density is a measure of mass per unit of area.)

Moments and Center of Mass of a Planar Lamina: Let f and g be continuous functions such that $f(x) \geq g(x)$ on $[a, b]$ and consider the planar lamina of uniform density ρ bounded by the graphs of $y=f(x)$ and $y=g(x)$, and $a \leq x \leq b$.

- The moments about the x-axis and y-axis are

$$
\begin{aligned}
& M_{x}=\int_{a}^{b} \frac{\rho}{2}\left(f^{2}(x)-g^{2}(x)\right) d x \\
& M_{y}=\int_{a}^{b} \rho x(f(x)-g(x)) d x
\end{aligned}
$$

- The center of mass (\bar{x}, \bar{y}) is given by

$$
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

where $m=\int_{a}^{b} \rho(f(x)-g(x)) d x$ is the mass of the region.

EXAMPLE: Find the center of mass of the lamina of uniform density ρ bounded by the graph of $f(x)=4-x^{2}$ and the x-axis.

Since the density ρ is a common factor of both the moments and the mass, it cancels out of the quotients representing the coordinates of the center of mass. Thus, the center of mass of a lamina of uniform density depends only on the shape of the lamina and not on its density. For this reason, the point (\bar{x}, \bar{y}) is sometimes called the center of mass of a region in the plane, or the centroid of the region. In other words, to find the centroid of a region in the plane, you simply assume that the region has a constant density of $\rho=1$ and compute the corresponding center of mass.

EXAMPLE: Find the centroid of the region bounded by the graphs of $f(x)=4-x^{2}$ and $g(x)=x+2$.

The Theorem of Pappus: Let R be a region in a plane and let L be the line in the same plane such that L does not intersect the interior of R. If r is the distance between the centroid of R and the line, then the volume V of the solid of revolution formed by revolving R about the line is

$$
V=2 \pi r A
$$

where A is the area of R. (Note that $2 \pi r$ is the distance traveled by the centroid as the region is revolved about the line.)

EXAMPLE: Find the volume of the torus formed by revolving the circular region bounded by $(x-2)^{2}+y^{2}=1$ about the y-axis.

