Section 5.2: GCF and LCM

- Greatest Common Factor (GCF): of two (or more) nonzero whole numbers is the largest whole number that is a factor of both (or all) of the numbers. The GCF of a and b is denoted $\operatorname{GCF}(a, b)$.

1. Set Intersection Method: List all factors for a in one set. List all factors of b in another set. Take the intersection of these two sets. The GCF is the largest number in the intersection.
2. Prime Factorization Method: Express the prime factorization of each number. The GCF is the product of the common primes to their smallest exponent.

Example 1. Find the $\operatorname{GCF}(291060,858000)$.

Theorem 1 If a and b are whole numbers, with $a \geq b$, then

$$
G C F(a, b)=G C F(a-b, b) .
$$

- Least Common Multiple (LCM): of two (or more) nonzero whole numbers is the smallest nonzero whole number that is a multiple of each (or all) of the numbers. The LCM of a and b is denoted $\operatorname{LCM}(a, b)$.

1. Set Intersection Method: List the first several nonzero multiples of a in one set. List the first several nonzero multiples of b in another set. Take the intersection of these sets. The LCM is the smallest number in the intersection.
2. Prime Factorization Method: Express the prime factorization of each number. The LCM is the product of all primes appearing in the factorizations to their highest exponent.

Example 2. Find the $\operatorname{LCM}(291060,858000)$.

Theorem 2 Let a and b be any two whole numbers. Then

$$
G C F(a, b) \cdot L C M(a, b)=a \cdot b .
$$

Example 3. If $a=2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 7^{3}, G C F(a, b)=2^{2} \cdot 3^{2} \cdot 7^{3}$, and $\operatorname{LCM}(a, b)=2^{3} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4} \cdot 11$, then find b.

Theorem 3 Suppose that a counting number n is expressed as a product of distinct primes with their respective exponents; say,

$$
n=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

Then the number of factors of n is the product

$$
\left(n_{1}+1\right)\left(n_{2}+1\right) \cdots\left(n_{m}+1\right) .
$$

Example 4. How many factors does 173250 have?

