Section 8.1: Addition and Subtraction of Integers

- Integers: The set of integers is the set $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$. The numbers $1,2,3, \ldots$ are called positive integers and the numbers $-1,-2,-3, \ldots$ are called negative integers. Zero is neither a positive nor negative integer.
- Representing integers using a set model: In the set model, we can use + to represent positives and - to represent negatives.

- Integer Number Line:

- Opposite: The opposite of an integer a, written $-a$ or $-(a)$, is defined as
- represented by the same number of symbols as a but of the opposite symbol in the set model.
- represented by the integer that is the mirror image about zero on the number line.

ADDITION:

- Set Model:

- Measurement Model:

INTEGER ADDITION FACTS:

- positive + positive $=$ positive
- negative + negative $=$ negative
- positive + negative $=$ cannot be determined
- negative + positive $=$ cannot be determined

Properties of Integer Addition

- Closure Property: integer + integer $=$ integer.
- Commutative Property: If a and b are integers, then $a+b=b+a$.
- Associative Property: If a, b, and c are integers, then $a+(b+c)=(a+b)+c$.
- Identity Property: Zero is the unique integer such that $a+0=a=0+a$ for all integers a. We say that 0 is the additive identity.
- Additive Inverse Property: For each integer a, there is a unique integer $-a$, such that $a+(-a)=0=(-a)+a$. We say that $-a$ is the additive inverse, or opposite, of a. NOTE: $-a$ is not necessarily negative.

NOTE: The additive inverse property is a property that integer addition has that whole number addition did not.

SUBTRACTION:

- Take-away approach:
- Adding the opposite: Let a and b be any integers. Then $a-b=a+(-b)$.
- Missing addend approach: Let a, b, and c be any integers. Then $a-b=c$ if and only if $b+c=a$.

